

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Modeling Molecular Kinetics with Koopman Operators and Kernel-based Learning

Feliks Nüske

May 13, 2024

Metastable Systems

Goal: Automatically analyse *metastable* systems based on simulation data.

Metastable Systems

- **Goal:** Automatically analyse *metastable* systems based on simulation data.
- Illustration: Langevin Dynamics $dX_t = -\nabla V(X_t) dt + \sqrt{2k_BT} dW_t$.

DMP

Metastable Systems

- **Goal:** Automatically analyse *metastable* systems based on simulation data.
- Illustration: Langevin Dynamics $dX_t = -\nabla V(X_t) dt + \sqrt{2k_BT} dW_t$.
- Q: What are metastable states? What are their transition rates? ...

1. The Koopman Operator and EDMD

- 2. Variational Approach
- 3. Kernel Methods and Random Features

4. Generator Learning

Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x)\cdots\psi_n(x)\right]^T.$$

• Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x)\cdots\psi_n(x)\right]^T.$$

Generate transformed snapshot matrices $(x_k, y_k \text{ separated by lag time } t)$:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & | & \cdots & | & \psi(x_m) \end{bmatrix}, \quad \Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & | & \cdots & | & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Choose finitely many observables:

DMP

$$\psi(x) = \left[\psi_1(x)\cdots\psi_n(x)\right]^T.$$

Generate transformed snapshot matrices $(x_k, y_k \text{ separated by lag time } t)$:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & | & \cdots & | & \psi(x_m) \end{bmatrix}, \quad \Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & | & \cdots & | & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Solve regression problem (EDMD):

$$\begin{aligned} \mathbf{K}^t &= \operatorname{argmin}_{K \in \mathbb{R}^{n \times n}} \| \Psi(\mathbf{Y}) - \mathbf{K}^T \Psi(\mathbf{X}) \|_F \\ &= (\Psi(\mathbf{X})^T \Psi(\mathbf{X}))^{-1} (\Psi(\mathbf{X})^T \Psi(\mathbf{Y})). \end{aligned}$$

• Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x)\cdots\psi_n(x)\right]^T.$$

Generate transformed snapshot matrices $(x_k, y_k \text{ separated by lag time } t)$:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & | & \cdots & | & \psi(x_m) \end{bmatrix}, \quad \Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & | & \cdots & | & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Solve **regression** problem (EDMD):

$$\mathbf{K}^{t} = \operatorname{argmin}_{K \in \mathbb{R}^{n \times n}} \| \Psi(\mathbf{Y}) - \mathbf{K}^{T} \Psi(\mathbf{X}) \|_{F}$$
$$= (\Psi(\mathbf{X})^{T} \Psi(\mathbf{X}))^{-1} (\Psi(\mathbf{X})^{T} \Psi(\mathbf{Y})).$$

Why is this a good idea? Answer in two steps...

Williams et al, JNLS (2015)

.

Infinite Data Limit:

$$\frac{1}{m} \left[\Psi(\mathbf{X})^T \Psi(\mathbf{X}) \right]_{ij} \to \int_{\mathbb{X}} \psi_i(x) \, \psi_j(x) \, \mathrm{d}\rho(x),$$
$$\frac{1}{m} \left[\Psi(\mathbf{X})^T \Psi(\mathbf{Y}) \right]_{ij} \to \int \psi_i(x) \, \mathbb{E}[\psi_j(\mathcal{X}_t) | \mathcal{X}_0 = x] \, \mathrm{d}\rho(x).$$

EDMD learns a finite-dimensional projection of the **Koopman operator**:

$$\mathcal{K}^t \phi(x) = \mathbb{E}[\phi(\mathcal{X}_t) | \mathcal{X}_0 = x].$$

Reviews: Klus, FN, et al, JNLS, 2018, Mauroy, Suzuki, Mezic (eds), Koopman operator in systems and control, Springer 2020, Berry, Giannakis, Harlim, Notices of the AMS, 2020,

Introduce the generator of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi.$$

Reviews: Klus, FN, et al, JNLS, 2018, Mauroy, Suzuki, Mezic (eds), Koopman operator in systems and control, Springer 2020, Berry, Giannakis, Harlim, Notices of the AMS, 2020,

■ Introduce the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi.$$

• Conditional expectations follow linear equation in function space:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}^t\psi(x) = \mathcal{L}\mathcal{K}^t\psi(x).$$

Reviews: Klus, FN, et al, JNLS, 2018, Mauroy, Suzuki, Mezic (eds), Koopman operator in systems and control, Springer 2020, Berry, Giannakis, Harlim, Notices of the AMS, 2020,

Introduce the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi.$$

• Conditional expectations follow linear equation in function space:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}^t\psi(x) = \mathcal{L}\mathcal{K}^t\psi(x).$$

• Learning a linear model is justified.

Reviews: Klus, FN, et al, JNLS, 2018, Mauroy, Suzuki, Mezic (eds), Koopman operator in systems and control, Springer 2020, Berry, Giannakis, Harlim, Notices of the AMS, 2020,

DMP DATA-DRIVEN MODELING OF The Koopman Approach

Main Idea: lifting into an infinite-dimensional space where the dynamics become linear.

TA-DRIVEN MODELING OF Special Case: MSM

Piece-wise constant basis functions lead to stochastic transition matrix:

$$\psi_i(x) = \begin{cases} 1 & x \in S_i \\ 0 & \text{else} \end{cases}, \\ [\mathbf{K}^t]_{ij} = [\mathbf{T}^t]_{ij} \approx \mathbb{P}(X_t \in S_j \mid X_0 \in S_i). \end{cases}$$

Prinz et al, JCP (2011),

DMP

Bowman, Pande, Noé (eds.), Springer, 2014

Outline

1. The Koopman Operator and EDMD

2. Variational Approach

3. Kernel Methods and Random Features

4. Generator Learning

Variational Principle

• Metastability is encoded by *dominant eigenvalues* of the Koopman operator:

 $1 = \lambda_0(t) \ge \ldots \ge \lambda_M(t).$

Davies, J. London. Math. Soc., 1982; Schütte et al, J. Comp. Phys, 1999;

Noé and FN, SIAM MMS, 2013,

Variational Principle

• Metastability is encoded by *dominant eigenvalues* of the Koopman operator:

 $1 = \lambda_0(t) \ge \ldots \ge \lambda_M(t).$

Variational Characterization:

$$\sum_{i=0}^{M} \left\langle \phi_{i}, \mathcal{K}^{t} \phi_{i} \right\rangle_{\mu} =: \mathcal{R}(\phi) \leq \sum_{i=0}^{M} \lambda_{i}(t)$$

$$\left\langle \phi_{k}, \phi_{l} \right\rangle_{\mu} = \delta_{kl}.$$
(1)

Davies, J. London. Math. Soc., 1982; Schütte et al, J. Comp. Phys, 1999;

Noé and FN, SIAM MMS, 2013,

DMP

Variational Principle

• Metastability is encoded by *dominant eigenvalues* of the Koopman operator:

 $1 = \lambda_0(t) \ge \ldots \ge \lambda_M(t).$

Variational Characterization:

$$\sum_{i=0}^{M} \left\langle \phi_{i}, \mathcal{K}^{t} \phi_{i} \right\rangle_{\mu} =: \mathcal{R}(\phi) \leq \sum_{i=0}^{M} \lambda_{i}(t)$$

$$\left\langle \phi_{k}, \phi_{l} \right\rangle_{\mu} = \delta_{kl}.$$
(1)

All quantities in (1-2) can be **estimated from simulation data**:

$$\langle \phi_i, \phi_i \rangle_{\mu} \approx \frac{1}{m} \sum_{k=1}^m \phi_i(x_k) \phi_i(x_k), \quad \left\langle \phi_i, \mathcal{K}^t \phi_i \right\rangle_{\mu} \approx \frac{1}{m} \sum_{k=1}^m \phi_i(x_k) \phi_i(y_k).$$

Davies, J. London. Math. Soc., 1982; Schütte et al, J. Comp. Phys, 1999;

Noé and FN, SIAM MMS, 2013,

DMP

Feliks Nüske, nueske@mpi-magdeburg.mpg.de

VEN MODELING OF Linear Variational Approach

• Applied to a finite-dimensional subspace $\left[\psi_1(x)\cdots\psi_n(x)\right]^T$, i.e. writing

$$\phi_i = \sum_{j=1}^n \mathbf{v}_{ji} \psi_j,$$

Noé and FN, SIAM MMS, 2013, FN, Keller, et al, JCTC, 2014 TICA: Pérez-Hernández et al, JCP, 2013, Deep Learning: Mardt et al, Nat. Commun., 2018

Non-reversible systems: Wu and Noé, JNLS, 2020

DMP

IMODELING OF Linear Variational Approach

• Applied to a finite-dimensional subspace $[\psi_1(x)\cdots\psi_n(x)]^T$, i.e. writing

$$\phi_i = \sum_{j=1}^n \mathbf{v}_{ji} \psi_j,$$

leads to generalized eigenvalue problem for EDMD matrices:

$$\mathbf{C}^{t}\mathbf{V} = \mathbf{C}^{0}\mathbf{V}\Lambda, \qquad \mathbf{C}^{t} = \frac{1}{m}\sum_{l=1}^{m}\psi(x_{k})\otimes\psi(y_{k}), \qquad \mathbf{C}^{0} = \sum_{l=1}^{m}\psi(x_{k})\otimes\psi(x_{k}).$$

Noé and FN, SIAM MMS, 2013, FN, Keller, et al, JCTC, 2014 TICA: Pérez-Hernández et al, JCP, 2013, Deep Learning: Mardt et al, Nat. Commun., 2018

Non-reversible systems: Wu and Noé, JNLS, 2020

DMP

1. The Koopman Operator and EDMD

- 2. Variational Approach
- 3. Kernel Methods and Random Features

4. Generator Learning

DMP DATA-DRIVEN MODELING OF Data-driven Basis Sets

Choosing a good basis set is hard.Idea: let the data define the basis.

Typical choice: radial basis functions, e.g.

$$k(x_i, y) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - y||^2\right)$$

• Kernel-based basis functions $k(x_i, \cdot)$ lead to matrices...

 $\mathbf{C}^{0}(r,s) = \mathbf{K}_{X}(r,s) = k(x_{r},x_{s}),$ $\mathbf{C}^{t}(r,s) = \mathbf{K}_{X}^{t}(r,s) = k(y_{r},x_{s}).$

• ... and the generalized eigenvalue problem:

$$\mathbf{K}_X^t \mathbf{w}_i = \lambda_i(t) \mathbf{K}_X \mathbf{w}_i.$$

Both matrices scale with the data size $(m \times m)$.

Klus et al, JNLS, 2020; Klus, FN, and Hamzi, Entropy, 2020

■ A translation invariant kernel k(x, y) = γ(x − y) can be written as a superposition of complex plane waves:

$$k(x,y) = \mathbb{E}^{\omega \sim \rho} \left[e^{-i\omega^T (x-y)} \right] \approx \frac{1}{p} \sum_{u=1}^p e^{-i\omega_u^T x} \overline{e^{-i\omega_u^T y}},$$

where ρ is the **spectral measure** in frequency space (Bochner's theorem).

Rahimi and Recht, Advances in Neural Information Processing Systems, 2007

■ A translation invariant kernel k(x, y) = γ(x − y) can be written as a superposition of complex plane waves:

$$k(x,y) = \mathbb{E}^{\omega \sim \rho} \left[e^{-i\omega^T (x-y)} \right] \approx \frac{1}{p} \sum_{u=1}^p e^{-i\omega_u^T x} \overline{e^{-i\omega_u^T y}},$$

where ρ is the **spectral measure** in frequency space (Bochner's theorem).

The spectral measure is known for most popular kernels (e.g. ρ is Gaussian for the Gaussian RBF kernel). Sampling from ρ is easy.

Rahimi and Recht, Advances in Neural Information Processing Systems, 2007

IMODELING OF Low-Rank Kernel GEV

Low-rank rep of kernel Koopman GEV:

$$\mathbf{K}_X = [k(x_r, x_s)]_{r,s} \approx \frac{1}{p} \left[\mathbf{M} \mathbf{M}^{\mathrm{H}} \right]_{r,s}, \qquad \mathbf{K}_X^t = [k(y_r, x_s)]_{r,s} \approx \frac{1}{p} \left[\mathbf{M}^t \mathbf{M}^{\mathrm{H}} \right]_{r,s},$$
$$\mathbf{M} = \left[e^{-ix_r^\top \omega_u} \right]_{r,u} \in \mathbb{C}^{m \times p}, \qquad \mathbf{M}^t = \left[e^{-iy_r^\top \omega_u} \right]_{r,u} \mathbb{C}^{m \times p}.$$

FN and Klus, JCP, 2023

DMP

Low-Rank Kernel GEV

Non-zero eigenvalues can be obtained from dual problem

 $\mathbf{M}^{\mathrm{H}}\mathbf{M}^{t}\mathbf{v}_{i} = \hat{\lambda}_{i}(t)\mathbf{M}^{\mathrm{H}}\mathbf{M}\mathbf{v}_{i},$

which is of dimension $p \times p$.

FN and Klus, JCP, 2023

Algorithm

Algorithm 1 RFF-based Spectral Approximation of the Koopman Operator

Input: data matrices $\mathbf{X} = [x_1, \dots, x_m] \in \mathbb{R}^{d \times m}$, $\mathbf{Y} = [y_1, \dots, y_m] \in \mathbb{R}^{d \times m}$ kernel function k with spectral measure ρ , number of features p, truncation rule for singular values. **Output:** Approximate eigenpairs $(\hat{\lambda}_i(t), \hat{\psi}_i)$.

1: Draw p samples $\{\omega_u\}_{u=1}^p$ from the spectral measure ρ .

- 2: Form matrices $\mathbf{M} = \begin{bmatrix} e^{-ix_r^\top \omega_u} \end{bmatrix}_{r,u}, \quad \mathbf{M}^t = \begin{bmatrix} e^{-iy_r^\top \omega_u} \end{bmatrix}_{r,u}.$
- 3: Compute SVD of \mathbf{M} , choose rank r according to truncation rule: $\mathbf{M} \approx \mathbf{U} \Sigma \mathbf{W}^{\mathrm{H}}$.
- 4: Form reduced matrix $\mathbf{R} = \mathbf{U}^{\mathrm{H}} \mathbf{M}^t \mathbf{W} \Sigma^{-1}$.
- 5: Compute eigenpairs of reduced problem $\mathbf{R}\mathbf{u}_i = \hat{\lambda}_i(t)\mathbf{u}_i$.
- 6: Transform to original RFF basis: $\mathbf{v}_i = \mathbf{W} \Sigma^{-1} \mathbf{u}_i$, $\hat{\psi}_i(x) = \mathbf{v}_i^{\mathrm{H}} \phi_{\mathrm{RFF}}(x)$.

Small protein, 35 amino acids.

Fip35

- Small protein, 35 amino acids.
- Use Gaussian kernel on 600 distances and angles.

Small protein, 35 amino acids.

• Use Gaussian kernel on 600 distances and angles.

Fip35

• Tune Gaussian bandwidth and feature size *p* by variational approach.

DATA-DRIVEN MODELING O COMPLEX PHYSICAL SYSTE

Small protein, 35 amino acids.

• Use Gaussian kernel on 600 distances and angles.

Fip35

- Tune Gaussian bandwidth and feature size *p* by variational approach.
- Compute leading 2 eigenvalues and eigenfunctions.
- Transform into membership functions indicating metastable states.

1. The Koopman Operator and EDMD

- 2. Variational Approach
- 3. Kernel Methods and Random Features

4. Generator Learning

ATA-DRIVEN MODELING OF Generator Learning (gEDMD)

Recall the generator of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi,$$

-1

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}^t\psi(x) = \mathcal{L}\mathcal{K}^t\psi(x).$$

DMP

DMP DATA-DRIVEN MODELING OF Generator Learning (gEDMD)

Recall the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}^t \psi(x) = \mathcal{L}\mathcal{K}^t \psi(x).$$

For SDEs, generator is known in analytical form:

$$\mathcal{L}\psi = -\nabla V \cdot \nabla \psi + k_B T \Delta \psi.$$

Recall the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}^t \psi(x) = \mathcal{L}\mathcal{K}^t \psi(x).$$

For SDEs, generator is known in analytical form:

$$\mathcal{L}\psi = -\nabla V \cdot \nabla \psi + k_B T \Delta \psi.$$

Learn a data-driven matrix model analogous to EDMD:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi_1(x_1) & \dots & \psi_1(x_m) \\ \vdots & \ddots & \vdots \\ \psi_n(x_1) & \dots & \psi_n(x_m) \end{bmatrix}, \qquad \mathcal{L}\Psi(\mathbf{X}) = \begin{bmatrix} \mathcal{L}\psi_1(x_1) & \dots & \mathcal{L}\psi_1(x_m) \\ \vdots & \ddots & \vdots \\ \mathcal{L}\psi_n(x_1) & \dots & \mathcal{L}\psi_n(x_m) \end{bmatrix},$$

matrix model:

$$\mathbf{L} = \left(\Psi(\mathbf{X}) \Psi(\mathbf{X})^{\top} \right)^{-1} \left(\Psi(\mathbf{X}) \mathcal{L} \Psi(\mathbf{X})^{\top} \right).$$

Coarse Grained Generator

• Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.

MODELING OF VSICAL SYSTEMS Coarse Grained Generator

- Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.
- Let \mathcal{P} be the conditional expectation with respect to ξ :

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

DMP

ODELING OF Coarse Grained Generator

- Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.
- Let \mathcal{P} be the conditional expectation with respect to ξ :

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

Projected generator $\mathcal{L}^{\xi} = \mathcal{PLP}$ is again the generator of an effective SDE on \mathbb{R}^m .

$$d\mathcal{Z}_t = b^{\xi}(\mathcal{Z}_t) \,\mathrm{d}t + \sigma^{\xi}(\mathcal{Z}_t) \,\mathrm{d}W_t.$$

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

Learning the Reduced Generator

Given a CG map ξ , choose basis functions on CG space $\psi_i = \psi_i(\xi(x))$.

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

Learning the Reduced Generator

Given a CG map ξ , choose basis functions on CG space $\psi_i = \psi_i(\xi(x))$.

• We have the fundamental identity [1]

$$\left\langle \psi_i, \mathcal{L}\psi_j \right\rangle_\mu = \left\langle \psi_i, \mathcal{L}^{\xi}\psi_j \right\rangle_\nu.$$

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

DMP

Learning the Reduced Generator

- Given a CG map ξ , choose basis functions on CG space $\psi_i = \psi_i(\xi(x))$.
- We have the fundamental identity [1]

$$\left\langle \psi_i, \mathcal{L}\psi_j \right\rangle_\mu = \left\langle \psi_i, \mathcal{L}^{\xi}\psi_j \right\rangle_\nu.$$

• Therefore, gEDMD simultaneously provides a matrix approximation of \mathcal{L} and \mathcal{L}^{ξ} . [2].

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

DMP

Koof Coarse Grained Equations

Learn effective SDE in two steps

ING OF Coarse Grained Equations

Learn effective SDE in two steps

 Obtain effective potential from thermodynamic models, e.g. force matching.

Learn effective SDE in two steps

- Obtain effective potential from thermodynamic models, e.g. force matching.
- Learn effective diffusion by matching it to CG generator models:

$$\left\langle \mathcal{L}_{\theta}^{\xi}\psi_{i}, f_{j}\right\rangle_{\nu} = -\frac{1}{2}\int \nabla\psi_{i}(z)\cdot A_{\theta}^{\xi}(z)\cdot \nabla f_{j}(z) \,\mathrm{d}\nu.$$

IMODELING OF SCOARSE Grained Equations

Learn effective SDE in two steps

- Obtain effective potential from thermodynamic models, e.g. force matching.
- Learn effective diffusion by matching it to CG generator models:

$$\left\langle \mathcal{L}_{\theta}^{\xi}\psi_{i}, f_{j}\right\rangle_{\nu} = -\frac{1}{2}\int \nabla\psi_{i}(z)\cdot A_{\theta}^{\xi}(z)\cdot \nabla f_{j}(z) \,\mathrm{d}\nu.$$

Acknowledgments

Main Collaborators: Stefan Klus (Heriot-Watt U, Edinburgh), Frank Noé (Microsoft Research), Cecilia Clementi (Freie U Berlin), Karl Worthmann (TU Ilmenau), Sebastian Peitz (U Paderborn), Boumediene Hamzi (Caltech)

References:

- FN, Keller, Pérez-Hernández, Mey, Noé, Variational Approach to Molecular Kinetics, JCTC 10 (4), 1739-1752, 2014
- **FN**, Boninsegna, Clementi *Coarse-graining molecular systems by spectral matching*, Journal of Chemical Physics 151 (4), 2019
- Klus, FN, Hamzi, Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator, Entropy, 22, 0722, 2020
- **FN** and Klus, *Efficient Approximation of Molecular Kinetics using Random Fourier Features*, Journal of Chemical Physics 159, 074105, 2023
- Philipp, Schaller, Boshoff, Peitz, FN, Worthmann, Extended Dynamic Mode Decomposition: Sharp bounds on the sample efficiency, arxiv 2402.02494, 2024