

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG



#### Dynamically Consistent Coarse-Graining with Koopman Operators

Feliks Nüske

September 26, 2024



#### 1. Koopman Models and Variational Approach

Outline

2. Dynamical Coarse Graining



#### Motivation

#### Training Data for 2d Duffing Oscillator





#### **Motivation**

Forecasting with linear Koopman Model





Choose finitely many non-linear observables:

$$\psi(x) = \left[\psi_1(x)\cdots\psi_n(x)\right]^\top.$$

• Generate transformed snapshot matrices  $(x_k, y_k \text{ separated by } t)$ :

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & | & \cdots & | & \psi(x_m) \end{bmatrix}, \quad \Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & | & \cdots & | & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

Solve linear regression problem (EDMD):

$$\begin{aligned} \mathbf{T}_t &= \operatorname{argmin}_{\mathbf{T} \in \mathbb{R}^{n \times n}} \| \Psi(\mathbf{Y}) - \mathbf{T}^\top \Psi(\mathbf{X}) \|_F \\ &= (\Psi(\mathbf{X})^T \Psi(\mathbf{X}))^{-1} (\Psi(\mathbf{X})^T \Psi(\mathbf{Y})) = \hat{\mathbf{C}}_0^{-1} \hat{\mathbf{C}}_t^{-1}. \end{aligned}$$

Justified by Koopman theory for complete basis.

Williams et al, Journal of Nonlinear Science (2015)



## Metastable Systems

**Goal:** Automatically analyse *metastable* systems based on simulation data (common in molecular systems, e.g. protein folding, ligand binding,...)



## Metastable Systems

- **Goal:** Automatically analyse *metastable* systems based on simulation data (common in molecular systems, e.g. protein folding, ligand binding,...)
- **Q:** What are metastable states? What are their transition rates? ...



DMP

# DRIVEN MODELING OF Linear Variational Approach

- Meta-stable states are encoded by *dominant eigenvectors* of Koopman matrix.
- Variational characterization for leading Koopman eigenvalues:

$$\sum_{i=0}^{M} \left\langle \phi_{i}, \mathcal{K}^{t} \phi_{i} \right\rangle_{\mu} =: \mathcal{R}(\phi) \leq \sum_{i=0}^{M} \lambda_{i}(t)$$
$$\left\langle \phi_{k}, \phi_{l} \right\rangle_{\mu} = \delta_{kl}.$$

Generalized eigenvalue problem for EDMD matrices:

$$\hat{\mathbf{C}}_t \mathbf{w}_i = \lambda_i(t) \hat{\mathbf{C}}_0 \mathbf{w}_i.$$

Noé and FN, SIAM MMS (2013),

DMP

FN, Keller, Pérez-Hernández, Mey, Noé, J. Chemical Theory Comput. (2014)



## Application: Fip35

Fast folding protein., 35 amino acids.

FN and Klus, J Chemical Physics (2023),



## Application: Fip35

- Fast folding protein., 35 amino acids.
- Use Gaussian kernel on 600 distances and angles.
- Tune Gaussian bandwidth and random feature size by variational approach.



FN and Klus, J Chemical Physics (2023),



# **Application: Fip35**

- Fast folding protein., 35 amino acids.
- Use Gaussian kernel on 600 distances and angles.
- Tune Gaussian bandwidth and random feature size by variational approach.
- Compute leading two eigenvalues and eigenfunctions.
- Transform into membership functions indicating metastable states.
   FN and Klus, J Chemical Physics (2023),





#### Outline

#### 1. Koopman Models and Variational Approach

2. Dynamical Coarse Graining



## **Coarse Grained Generator**

• A coarse graining (CG) is a map to lower-dimensional space:  $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$ 

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

## COLLING OF Coarse Grained Generator

A coarse graining (CG) is a map to lower-dimensional space: ξ : ℝ<sup>d</sup> → ℝ<sup>m</sup>, m ≤ d
 Let P be the conditional expectation with respect to ξ:

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

DMP

## Deling of Coarse Grained Generator

A coarse graining (CG) is a map to lower-dimensional space: ξ : ℝ<sup>d</sup> → ℝ<sup>m</sup>, m ≤ d
Let P be the conditional expectation with respect to ξ:

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

Projected generator  $\mathcal{L}^{\xi} = \mathcal{PLP}$  is again the generator of an *effective SDE* on  $\mathbb{R}^m$ .

 $d\mathcal{Z}_t = b^{\xi}(\mathcal{Z}_t) \,\mathrm{d}t + \sigma^{\xi}(\mathcal{Z}_t) \,\mathrm{d}W_t.$ 

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

DMP

## DELING OF Coarse Grained Generator

A coarse graining (CG) is a map to lower-dimensional space: ξ : ℝ<sup>d</sup> → ℝ<sup>m</sup>, m ≤ d
Let P be the conditional expectation with respect to ξ:

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

Projected generator  $\mathcal{L}^{\xi} = \mathcal{PLP}$  is again the generator of an *effective SDE* on  $\mathbb{R}^m$ .

$$d\mathcal{Z}_t = b^{\xi}(\mathcal{Z}_t) \,\mathrm{d}t + \sigma^{\xi}(\mathcal{Z}_t) \,\mathrm{d}W_t.$$

■ Ignores memory effects. Effective parameters must be *approximated* / *learned*.

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

## Learning Coarse-Grained Dynamics

Reversible SDEs can be parametrized by a potential and a diffusion field:

$$d\mathcal{Z}_t = \left[ -a^{\xi}(\mathcal{Z}_t) \nabla F^{\xi}(\mathcal{Z}_t) + \nabla \cdot a^{\xi}(\mathcal{Z}_t) \right] \, \mathrm{d}t + \sigma^{\xi}(\mathcal{Z}_t) \, \mathrm{d}W_t$$

Noid et al, J. Chemical Physics, (2008),

DMP

## Learning Coarse-Grained Dynamics

• Reversible SDEs can be parametrized by a potential and a diffusion field:

$$d\mathcal{Z}_t = \left[ -a^{\xi}(\mathcal{Z}_t) \nabla F^{\xi}(\mathcal{Z}_t) + \nabla \cdot a^{\xi}(\mathcal{Z}_t) \right] dt + \sigma^{\xi}(\mathcal{Z}_t) dW_t.$$

• Effective potential can be learned using *force matching*.

Noid et al, J. Chemical Physics, (2008),

DMP

## Learning Coarse-Grained Dynamics

• Reversible SDEs can be parametrized by a potential and a diffusion field:

$$d\mathcal{Z}_t = \left[ -a^{\xi}(\mathcal{Z}_t) \nabla F^{\xi}(\mathcal{Z}_t) + \nabla \cdot a^{\xi}(\mathcal{Z}_t) \right] dt + \sigma^{\xi}(\mathcal{Z}_t) dW_t.$$

• Effective potential can be learned using *force matching*.

• Our method: Effective diffusion can be learned by diffusion learning.

Noid et al, J. Chemical Physics, (2008),

DMP



$$\left\langle \psi_i \circ \xi, \, \mathcal{L}(\psi_j \circ \xi) \right\rangle_{\mu} = \left\langle \psi_i, \, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu}.$$



$$\left\langle \psi_i \circ \xi, \, \mathcal{L}(\psi_j \circ \xi) \right\rangle_{\mu} = \left\langle \psi_i, \, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu}.$$

 $\blacksquare$  Data of the full system can be used to learn a model  $\mathbf{L}_{\mathrm{ref}}$  for the full generator.



$$\left\langle \psi_i \circ \xi, \, \mathcal{L}(\psi_j \circ \xi) \right\rangle_{\mu} = \left\langle \psi_i, \, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu}.$$

 $\blacksquare$  Data of the full system can be used to learn a model  $\mathbf{L}_{\mathrm{ref}}$  for the full generator.

• Matrix elements of effective generator are parametrized by effective diffusion:

$$\left\langle \psi_i, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu} = -\frac{1}{2} \int_{\mathbb{R}^m} \nabla_z \psi_i(z) \, a^{\xi}(z) \nabla_z \psi_j(z) \, \mathrm{d}\nu(z).$$



$$\left\langle \psi_i \circ \xi, \, \mathcal{L}(\psi_j \circ \xi) \right\rangle_{\mu} = \left\langle \psi_i, \, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu}.$$

 $\blacksquare$  Data of the full system can be used to learn a model  $\mathbf{L}_{\mathrm{ref}}$  for the full generator.

• Matrix elements of effective generator are parametrized by effective diffusion:

$$\left\langle \psi_i, \mathcal{L}^{\xi} \psi_j \right\rangle_{\nu} = -\frac{1}{2} \int_{\mathbb{R}^m} \nabla_z \psi_i(z) \, a^{\xi}(z) \nabla_z \psi_j(z) \, \mathrm{d}\nu(z).$$

• Match these matrix elements against reference model:

$$\alpha^* = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^{d \times d \times r}} \left[ \left\| \hat{\mathbf{L}}^{\mathrm{ref}} - \mathbf{L}_{\alpha} \right\|_2^2 + \gamma \left\| \frac{\partial \sigma}{\partial z} \right\|_2^2 \right]$$

# DATA-DRIVEN MODELING OF Alanine Dipeptide

Learn CG Model in 2d dihedral angle space.



# ATA-DRIVEN MODELING OF Alanine Dipeptide

Learn CG Model in 2d dihedral angle space.



Nateghi and FN, arxiv 2409.16396 (2024)

DMP



Analysis of propagated CG model:





## Acknowledgments





Stefan Klus

Vahid Nateghi

- References:
   FN, Keller, Pérez-Hernández, Mey, Noé, Variational Approach to Molecular Kinetics, J Chemical Theory Comput 10 (4), 1739-1752 (2014)
  - FN and Klus, Efficient Approximation of Molecular Kinetics using Random Fourier Features, J Chemical Physics 159, 074105 (2023)
  - Nateghi and **FN**, arxiv 2409.16396 (2024)

https://fnueske.github.io



#### Kernel Basis Sets

• Let the data define the basis.



Klus, FN, and Hamzi, Entropy (2020)

Feliks Nüske, nueske@mpi-magdeburg.mpg.de



• Let the data define the basis.



• Leads to a kernel k(x, y) (symmetric positive-definite function) with features:

 $\psi_i = k(x_i, \cdot)$ 

Klus, FN, and Hamzi, Entropy (2020)

Feliks Nüske, nueske@mpi-magdeburg.mpg.de



Let the data define the basis.



• Leads to a kernel k(x, y) (symmetric positive-definite function) with features:

 $\psi_i = k(x_i, \cdot)$ 

• Kernel basis can be reduced using *random Fourier features*.

Klus, FN, and Hamzi, Entropy (2020)

Feliks Nüske, nueske@mpi-magdeburg.mpg.de

## Kernels and Random Features

Translation invariant kernels  $k(x, y) = \gamma(x - y)$  are superpositions of complex plane waves (Bochner's Theorem):

$$k(x,y) = \mathbb{E}^{\omega \sim \rho} \left[ e^{-i\omega^T (x-y)} \right] \approx \frac{1}{p} \sum_{u=1}^p e^{-i\omega_u^T x} \overline{e^{-i\omega_u^T y}},$$

DMP

## Kernels and Random Features

Translation invariant kernels  $k(x, y) = \gamma(x - y)$  are superpositions of complex plane waves (Bochner's Theorem):

$$k(x,y) = \mathbb{E}^{\omega \sim \rho} \left[ e^{-i\omega^T (x-y)} \right] \approx \frac{1}{p} \sum_{u=1}^p e^{-i\omega_u^T x} \overline{e^{-i\omega_u^T y}},$$

Eigenvalue problem turns into low-rank format:



FN and Klus, J Chemical Physics (2023)

DMP