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Abstract. The slow processes of metastable stochastic dynamical systems are difficult to access
by direct numerical simulation due to the sampling problems. Here, we suggest an approach for
modeling the slow parts of Markov processes by approximating the dominant eigenfunctions and
eigenvalues of the propagator. To this end, a variational principle is derived that is based on the
maximization of a Rayleigh coefficient. It is shown that this Rayleigh coefficient can be estimated
from statistical observables that can be obtained from short distributed simulations starting from
different parts of state space. The approach forms a basis for the development of adaptive and
efficient computational algorithms for simulating and analyzing metastable Markov processes while
avoiding the sampling problem. Since any stochastic process with finite memory can be transformed
into a Markov process, the approach is applicable to a wide range of processes relevant for modeling
complex real-world phenomena.
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1. Introduction. In this article, we consider continuous-time Markov processes
z; €  living in a usually large state space (2 that is either continuous or discrete.
The process z; is considered to be sufficiently ergodic such that a unique stationary
density (invariant measure) p exists. Independent of the details of the dynamics
(such as system size, potential, stochastic coupling, etc.), there exists a family of
linear propagators P(7) which evolve the probability density of states p, as

(L1) pr = P(7) po.

Continuous-time Markov processes are useful models of real-world processes in a va-
riety of areas [44]. Examples include macroscopic phenomena such as the evolution
of financial and climate systems [24, 30], as well as microscopic dynamics such as
the diffusion of cells in liquids [1], the diffusion of biomolecules within cells [41], the
stochastic reaction dynamics of chemicals at surfaces [31], and the stochastic dy-
namics governing the structural dynamics of molecules [2]. Often, these dynamics
are metastable; i.e., they consist of slow processes between sets of state space that
have long lifetimes. In macromolecules, such slowly exchanging sets are called con-
formations, and hence the union of the slowest dynamical processes there are termed
conformation dynamics [35, 37].

In practice, the slow dynamical processes are the ones which pose the greatest
difficulties to direct numerical simulation as they require the longest simulation times.
An extreme example is the atomistic simulation of solvated biomolecules which would
require the propagation of a system with 10%-10° particles for 107100 time-steps, a
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task that is intractable or hardly tractable even with special-purpose supercomputers
[39]. However, the slowest processes are also the ones that are the most interesting in
many systems. They often correspond to rare events that change the global structure
and/or the functional behavior of the system. For example, in macromolecular sys-
tems, the slowest events often correspond to functional conformational changes such
as folding, binding, or catalysis [28, 45, 7, 21]. Therefore, a method is sought that
models the slow dynamical processes of continuous-time Markov processes accurately
and ideally in a way that supports the efficient simulation of these processes without
the need to solve the full direct numerical simulation problem.

Especially in statistical physics, many theories and methods have been proposed
for modeling slow dynamical processes. Examples are rate theories that describe
the passage rate of a process across a surface that separates metastable states [15,
20], pathway-based theories and methods that describe the transition dynamics of a
system from a subset A to a subset B of state space [14, 3, 25], and network-based
approaches that attempt to coarse-grain the high-dimensional dynamics to a network
of discrete jump events between substates or landmarks [47, 48]. These approaches
usually assume a separation of timescales between the slow and the fast processes
that results from vanishing smallness parameters (e.g., noise intensity, temperature).
In these cases, the mathematical analysis can be based on large deviation estimates
and variational principles [16, 14].

In this article, we consider a more general approach to describing slow dynamical
processes. When the operator P is compact and self-adjoint, (1.1) can be decomposed
into the propagator’s spectral components,

(1.2) pr =1+ Y ai(po)\i(7)li + Prast (7) po,
i=2
where p, s, 13,... are the propagator’s eigenfunctions and \;(7) = exp(—x;7) (sorted

in nonascending order) are the propagator’s real-valued eigenvalues that decay expo-
nentially in time with rates ;. a;(po) are factors depending on the initial density
po- Here we consider the situation that the eigenspaces of slow and fast processes are
orthogonal. For example, in the important case that the system studied is a micro-
scopic physical system in thermal equilibrium, such that the process z; is reversible
with respect to the invariant density p, the eigenspaces of slow and fast processes are
orthogonal for any choice of m. In such a case, m is a model parameter that can be
chosen to distinguish the m slow processes of interest from the fast processes Prast (T)
that are not of interest. For initial densities pg € span{u,la, ..., 1}, the term for fast
processes in (1.2) vanishes and the propagation can be performed exactly using only
the dominant eigenfunctions. Note that (1.2) represents the formulation of the dy-
namical process problem as a multiscale problem in time: u represents the timescale
00, ty = Ky 1 —7/1n Ay is the slowest dynamical process, etc. This formulation thus
allows essential characteristics of the dynamical process to be described by treating
its scales separately. The relation between dominant eigenvalues, exit times and rates,
and metastable sets has been studied by asymptotic expansions in certain smallness
parameters as well as by functional analytic means without any relation to smallness
parameters [23, 12, 46, 4, 5]. In particular, [10, 11] established fundamental relations
between the eigenvalues and eigenfunctions of P and metastable sets.

The task is now to approximate the propagator’s dominant eigenfunctions p, ls,
ls, ... and eigenvalues \;. In other disciplines, variational principles have been worked
out in order to approximate eigenfunctions and eigenvalues of known operators such
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as a quantum-mechanical Hamiltonian [43]. In contrast, for many complex dynami-
cal systems, P(7) is either not known explicitly or not available in a form that can
be transformed into (1.2). Instead, P(7) is given implicitly through stochastic re-
alizations of the process z;. Therefore, a variational principle is sought that allows
eigenfunctions p,ls,l3,... and eigenvalues A; to be approximated through statistical
observables of z;. Such a variational principle will be formulated in the present paper.

This problem has been studied extensively for specific functional forms of the
eigenfunctions [;. When [; are approximated via characteristic functions on a given
set decomposition of state space, i.e., l;ju~! € span{1g,,...,1g,} with S; C Q, the
problem of finding the best approximation to eigenfunctions and eigenvalues is solved
by a Markov model or Markov state model (MSM) [35, 4, 12, 34, 26, 22]. In an-
other version of MSMs, [; are approximated by committor functions between a few
predefined “cores” that form a noncomplete subset of state space [8, 13, 36]. Basis
functions that form a partition of unity are used in [49]. MSMs have been recently
used a lot to model molecular dynamics processes, especially in conjunction with
large amounts of distributedly simulated trajectories [42, 40, 9, 27, 8, 28]. Appli-
cations include conformational rearrangements and folding of peptides, proteins, and
RNA [9, 29, 6, 28, 45, 26]. In this application area, MSMs have had significant impact
because they can be estimated from relatively short simulation trajectories and yet
allow the system behavior to be predicted at long timescales.

Despite this success, significant challenges remain. For example, in most cur-
rent applications, the discretization of state space is done heuristically via a Voronoi
partition of state space obtained from clustering available data points. The ability
to construct a state space discretization adaptively would tremendously aid the con-
struction of MSMs that are precise while avoiding the use of too many states. Such
an adaptive discretization must be guided by an objective function that somehow
measures the error made by the model. A bound to the MSM discretization error
has been derived in [34]. However, this error is not suitable for designing a con-
structive discretization approach, as its evaluation requires knowledge of the exact
eigenfunctions. The variational principle derived in this paper uses only statistical
observables and is henceforth the basis for such a constructive approach to adaptive
discretization. Furthermore, it is shown that existing Markov modeling approaches
can be understood as a constrained optimal solution of the variational principle via
a Ritz or Roothaan—Hall method with different choices of basis sets. Based upon
this formulation, further development of basis sets appropriate for describing complex
molecular conformation dynamics can be made.

The article is organized as follows: In section 2 a variational principle is formulated
where the dominant eigenfunctions of stochastic dynamical systems are approximated
by maximizing a Rayleigh coefficient, which—in the limit of the exact solution—is
identical to the true eigenvalues. This Rayleigh coefficient is linked to the computa-
tion of correlation functions that can be evaluated without explicit knowledge of the
propagator P. Section 3 makes considerations concerning which types of functions
may be practically useful to construct an approximation to (1.2) in complex systems.
Section 4 shows numerical experiments on a diffusion process in a one-dimensional
double-well potential. Section 5 concludes this study and makes suggestions for future
research.

2. Variational principle for conformation dynamics.

2.1. Basics. Let € be a state space, and let us use x,y to denote points in this
state space. We consider a Markov process z; on 2 which is stationary and ergodic

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/18 to 128.42.167.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

638 FRANK NOE AND FELIKS NUSKE

with respect to its unique stationary (invariant) distribution pu(x) = p(z; = x) Vt.
The dynamics of the process z; are characterized by the transition density

(2-1) P(Xa)ﬁ T) = p(zt+r =Y | Zy = X),

which we assume to be independent of the time ¢. The correlation density, i.e., the
probability density of finding the process at points x and y at a time spacing of 7, is
then defined by

(2.2) C(x,y; 7) = p(x) p(x,y; 7) = p(Zt4r =, 2t = X).
We further assume z; to be reversible with respect to its stationary distribution,
ie.,
(2.3) w(x)p(x,y; 7) = ply) ply, x; 7),
(2.4) Clxy; 7) = Cly,x; 7).

Reversibility is not strictly necessary but tremendously simplifies the forthcom-
ing expressions and their interpretation [34]. In physical simulations, reversibility
is the consequence of the simulation system being in thermal equilibrium with its
environment; i.e., the dynamics in the system are purely a consequence of thermal
fluctuations and there are no external driving forces.

If, at time ¢ = 0, the process is distributed according to a probability distribution
po, the corresponding distribution at time 7 is given by

(2.5) pely) = /Q dx po(x) p(x,¥: 7) = P(7)po.

The time evolution of probability densities can be seen as the action of a linear
operator P(7), called the propagator of the process. This is a well-defined operator
on the Hilbert space Li,l(Q) of functions which are square-integrable with respect

to the weight function p~'. The scalar-product on this space is given by

(2.6) (ulv),- = /deu(x)v(x),u_l(x).

If we assume the transition density to be a smooth and bounded function of x and
y, the propagator can be shown to be bounded, with operator norm less than or
equal to one. Since the stationarity of p implies P(7)u = u, we even have ||P(7)|| =
1. Reversibility allows us to show that the propagator is self-adjoint and compact.
Furthermore, using the definition of the transition density, we can show that P(7)
satisfies a Chapman—Kolmogorov equation: For times 71,7 > 0, we have

(2.7) P(Tl +7'2) ZP(Tl)P(Tg).

2.2. Spectral decomposition. It follows from the above arguments that P(7)
possesses a sequence of real eigenvalues X;(7), with |A;(7)] < 1 and |A;(7)] — 0. Each
of these eigenvalues corresponds to an eigenfunction I; € Li,l(Q). The functions
l; form an orthonormal basis of the Hilbert space Li_l(Q). Clearly, Ai(7) = 1 is an
eigenvalue with eigenfunction {; = . In many applications, we can assume that A (7)
is nondegenerate and —1 is not an eigenvalue. Additionally, there usually is a number
m of positive eigenvalues

(2.8) 1=XM(7) > Xa(T) > - > A7),
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which are separated from the remaining spectrum. Due to the Chapman—Kolmogorov
equation, each eigenvalue \;(7) decays exponentially in time; i.e., we have

(2.9) Ai(T) = exp(—kKiT)

for some rate k; > 0. Clearly, k1 =0, Ka,..., ky are close to zero, and all remaining
rates are significantly larger than zero. If we now expand a function u € Li,l (Q) in
terms of the functions I;, i.e.,

o0

(2.10) => (u| ), L

=1

we can decompose the action of the operator P(7) into its action on each of the basis
functions:

P(r)u = Z (W 1), Pl

(2.11) = /\i()<u|l‘> il

—Zexp — KT u|l> .

8

1
Rm41

become very small [34], and to a good approximation we have

For lag times 7 > , all except the first m terms in the above sum have

(2.12) P(r)u ~ Zexp(—ﬁﬂ) (1), Li.

Knowledge of the dominant eigenfunctions and eigenvalues is therefore most help-
ful to the understanding of the process.

Remark 2.1. Instead of the propagator P(7), one can also consider the transfer
operator 7 (7), defined for functions u € L2 () by

(2.13) T(T)uly) = ﬁ /Q dxp(x,y; T)u(x)u(x).
Using the unitary multiplication operator M : L3 () = L2 1 (Q), defined by
(2.14) Mu(x) = p(x)u(x),
we have
(2.15) P(r) = MT(1)M,

and consequently the transfer operator inherits all of the above properties from P (7).
In particular, there is a sequence of eigenfunctions

(2.16) =

of T(r), corresponding to the same eigenvalues \;(7), which are normalized with
respect to the scalar-product weighted with j instead of p~!'. Especially, we have
r1 = 'p = 1. The two operators can be treated as equivalent, and all of the above
could have been formulated in terms of 7(7) as well.
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2.3. Rayleigh variational principle. In nontrivial dynamical systems neither
the correlation densities p(x,y; 7) and C'(x,y; 7) nor the eigenvalues \;(7) and eigen-
functions [; are analytically available. This section provides a variational principle
based on which these quantities can be estimated from simulation data generated by
the dynamical process z;. For this, the formalism introduced above is used to for-
mulate the Rayleigh variational principle used in quantum mechanics [43] for Markov
processes.

Let f be a real-valued function of state, f = f(x) : @ — R. Its autocorrelation
with respect to the stochastic process z; is given by
(2.17)

act(f; 7) = E[f(20) f(2r)] = / / dx dy f(x) C(x,y: 7) f(y) = (P()uf | nf), s

In the Dirac notation often used in physical literature, integrals such as the one above
may be abbreviated by E[f(xo) f(x,)] = (uf | P(7) | ).

THEOREM 2.2. The autocorrelation function of a weighted eigenfunction r, =
=ty is its eigenvalue \i(T):

(2.18) act(ry; 7) = Ere(20) re(z.)] = Ak (7).
Proof. Using (2.17) with f = pu~1l, it directly follows that
acf(re; 7) = (P()lk | lk) -

(2.19) = /\k(T) <lk | lk>u’1
= /\k(T) 0

THEOREM 2.3. Let Iy be an approximate model for the second eigenfunction,
which is normalized and orthogonal to the true first eigenfunction:

(2.20) (loy 1)1 =0,

(2.21) (I, I2) -1 = 1.

Then we find for 7o = [L_lig

(2.22) act(fo; 7) = E [f2(20) 72(27)] < Ao(7).

Proof. The proof is an application of the Rayleigh variational method to the
operator P(7). If Io is written in terms of the basis of eigenfunctions I;,

(223) ZQ = Zaili,
i=2
where a; = 0 because of the orthogonality condition, we find
act(ra;r) = (P(T)la | l2)
= > aa; (PO [ 1),

i,j=2

= > @) (L ),
(2.24) i,j=2

= f: aZ\i(7)
i=2

< o(7) ) af
().
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The estimate in the second-to-last row is due to the ordering of the eigenvalues,
and the last equality results from the normalization condition (2.21) and Parseval’s
identity. O

COROLLARY 2.4. Similarly, let I, be an approzimate model for the kth eigenfunc-
tion, with the normalization and orthogonality constraints

(2.25) (I 1)1 =0 Vi <k,
<lAk,lAk>‘uf1 =1.

Then

(2.26) act(Pr; 7) = B [Fr(20) 71 (27)] < Ak(7).

The proof is analogous to that of Theorem 2.3.

Remark 2.5. Estimates improving upon those of Theorems 2.2 and 2.3 and Corol-
lary 2.4 have been obtained in [22] for characteristic functions. With a redefinition of
the terminology, they can be directly transferred to the case of mutually orthonormal
basis functions. It would be interesting to study the applicability of these results to
more general cases. However, obtaining such estimates is not the focus of the present
paper.

Remark 2.6. The variational principle given by Theorems 2.2 and 2.3 and Corol-
lary 2.4 is fulfilled for I, with k& > 2 only if the k¥ — 1 dominant eigenfunctions are
already known.

In particular, the first eigenfunction, i.e., the stationary density, must be known.
In practice, these eigenfunctions are approximated by solving a variational principle.
Nonetheless, some basic statements can be made even if no eigenfunction is known
exactly. For example, it is trivial that when the estimated stationary density [ is used
in Theorem 2.2, then the estimate of the first eigenvalue is still always correctly 1,

(2.27) acf(itji; 7) = acf(1; 1) = 1,
and from Theorems 2.2 and 2.3 it follows that for any function 7y #
(2.28) acf(f; 7) < 1.

Hence the eigenvalue 1 is simple and dominant also when estimating eigenvalues from
data.

Remark 2.7. An important insight at this point is that a variational principle
of conformation dynamics can be formulated in terms of correlation functions. In
contrast to quantum mechanics or other fields where the variational principle has
been successfully employed, no closed-form expression of the operator P(7) is needed.
The ability to express the variational principle in terms of correlation functions with
respect to P(7) means that the eigenvalues to be maximized can be directly estimated
from simulation data. If statistically sufficient realizations of z; are available, then
the autocorrelation function can be estimated via

(2.29) ack(F: 7) = E(fp(20)k(2,)) ~ % S (7o) (20),

where N is the number of simulated time windows of length 7. We will try to use
this in the application of the method.
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2.4. Ritz method. The Ritz method is a systematic approach for finding the
best possible approximation to the m first eigenfunctions of an operator simulta-
neously in terms of a linear combination of orthonormal functions [32]. Here the

Ritz method is simply restated in terms of the present notation. Let y; : 2 — R,
i €{1,...,m}, be a set of m orthonormal basis functions,

(2.30) (Xi> Xj) =1 = 0ij,

and let x denote the vector of these functions,

(2.31) x(x) = [x1(x), ... ,Xm(x)]T.
We seek a coefficient matrix B € R™*™,
(2.32) B =[by,....bn],

with the column vectors b; = [b;1, ... ,bim]T that approximate the eigenfunctions of
the propagator as

(2.33) iz(x) = b?X(X) = Zbinj (%)

with respect to the constraint that the functions [; are also normalized. It turns out
that the solution B to the eigenvalue equation

(2.34) HB = BA,
with individual eigenvalue/eigenvector pairs
(2.35) Hb; = b;)\;

and density matrix H = [h;;] defined by

(2.36) hij = / / dx dyp~ (%) i (%) Cx, y: 7)1~ ()5 (v)
(2.37) =E[p " xi(20) 1" x;5 ()],

yields the desired result. More precisely, the eigenvector b; corresponding to the
greatest eigenvalue \; from (2.35) contains the coefficients of the linear combination
which maximizes the Rayleigh coefficient among the functions y;, and this maximum
is given by A;. Consequently, A; should be as close as possible to Ay = 1, and the
function generated from by should model the stationary density {;. But furthermore,
the remaining eigenvalues and eigenvectors generated from (2.34) can be used as
estimates of the other eigenvalues Ao, ..., Ap,.

COROLLARY 2.8. The second estimated eigenvalue A2 from (2.35) satisfies Ay <
A2.

Proof. First of all, note that (I | 1) _, = 0 by the orthogonality of the eigen-

ut
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vectors of the matrix H. For the same reason, we find that

(PO IE) = 3 buibay (P | ),

ij=1

= Y bubaihy;

ij=1

=X ) buiba
=1
(2.38) =0.

Now, let | = i, +yi2 be a linear combination of the first two model eigenfunctions
which is normalized such that

1= (i Z>M71

—2* (i | [1>,rl +y? (la | Zg>w
(2.39) =% 442

Using (2.38) and (2.39), computing the Rayleigh coefficient of [ results in
P |1 =2 {P(D)iy |1 + 2 (P()y | I
(PN =2 (PO L) |+ (PO b

= 3325\1 + y25\2
(2.40) = — 52 (M — o),

which is bounded from below by Ao Clearly, there is a normalized linear combination
[ of [ and [y which is orthogonal to ;. By (2.40) and the variational principle, we
conclude that

-1

Ao < <7D(T)Z | Z>#
<X. O

Remark 2.9. Due to the equality between (2.36) and (2.37) the elements of the
H matrix can be estimated as correlation functions of a simulation of the process z,
as mentioned above, provided that a sufficient approximation of y is at hand.

2.5. Roothaan—Hall method. The Roothaan—Hall method is a generalization
of the Ritz method used for solving the linear parameter optimization problem for
the case when the basis set is not orthogonal [33, 19]. Let the matrix S € R™*™ with
elements

(2.41) Sij = (Xis Xj) 1

be the matrix of overlap integrals with the normalization conditions S; = 1. Note
that S has full rank if and only if all y; are pairwise linearly independent. The
optimal solutions b; in the sense of (2.32)—(2.33) are found by the eigenvectors of the
generalized eigenvalue problem,

(2.42) HB = SBA,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/18 to 128.42.167.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

644 FRANK NOE AND FELIKS NUSKE
with the individual eigenvalue/eigenvector pairs
(2.43) Hb; = Sb; ;.

Remark 2.10. The Ritz and Roothaan—Hall methods are useful for eigenfunction
models that are expressed in terms of linear combinations of basis functions. Nonlinear
parameter models can also be handled with nonlinear optimization methods. In such
nonlinear cases it needs to be tested whether there is a unique optimum or not.

2.6. Markov state model. As an example, let {S1,...,S,} be pairwise disjoint
sets partitioning €, and let 7; = [ dxp(x) be the stationary probability of set S; C Q.
Consider the piecewise constant functions

(2.44) Xi =

where 1g, is the characteristic function that is 1 for x € S; and 0 elsewhere. Since
S;NS; =0 Vi# j these functions form a basis set with (x;, x;), = di;. Therefore,
we can directly use them as a model for the transfer operator eigenfunctions rg.
Evaluation of the corresponding H matrix yields

1
(2.45) hij = / / dxdy 1g, C(x,y; 7) 1g,
xJy

T4

v 1 / /
= dx dy C(x,y; T)
TiT5 JS; S

Cij

VTiT

T
V i

where ¢;; = Pz € Sj,2¢ € S;) is the joint probability of observing the process
in sets S; and S; with a time lag of 7, while T;; = P(zy1, € S; | 2 € S;) is
the corresponding transition probability. Thus, computing the optimal step-function
approximation to the true eigenfunctions r; = p~!'l; and eigenvalues \;(7) via the
Ritz method is the same as computing eigenvalues and eigenvectors of the Markov
model transition matrix T = [T};] and scaling them appropriately. This conclusion
can also be obtained from [34] via a different route.

3. Modeling. Section 2 provided a general variational principle for approxi-
mating the dominant eigenvalues and eigenfunctions of Markov processes. In order
to apply this principle to complex systems, a useful level of modeling the eigenfunc-
tions in terms of basis functions needs to be found, and appropriate classes of basis
functions must be identified. This section attempts a first approach to this problem
by making general considerations for what modeling schemes might be appropriate.

3.1. Half-weighted eigenfunctions. Is it beneficial to directly model the prop-
agator eigenfunctions l;,, their weighted counterparts v, = i), or rather yet another
set of functions? We would like to use a model that has the following properties:

1. As basis functions y; it is preferred to use local functions, i.e., either func-
tions with compact support, or at least with the property lim x| o Xi(x) — 0.
Such locality is useful for directing the computational effort to specific regions
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of state space and may aid the adaptive refinement of the eigenfunction ap-
proximation by specifically adding basis functions that add local refinements.
Since we also aim to model eigenfunctions as linear combinations of basis
functions, we cannot use the r; eigenfunctions that are not local.

2. We would like to be able to precompute as many expressions as possible
analytically. When using appropriate basis functions x; and x; it may be
possible to calculate analytic solutions of the integrals (x;, x;), although this
feature is usually destroyed when weighting with the stationary density, as
in (xi, X;j)-1- Therefore we will also avoid using the eigenfunctions I3 that
would require such a weighting.

Consider a rewrite of (2.17) as follows:

aci(ry; 7) = / / dx dy 1 (%) k(%) 1 Hx) Cx,y: 7)o () pEy) ()

(3.1) ://dx dy or(x) S(x,y; 7) o(y),

where the “half-weighted” eigenfunctions

(3.2) bi(x) = ——
p2 (x)

and the “half-weighted” correlation density

(3.3) S(x,y;7) = M
p2 (x)pz (y)

have been defined. Now, when modeling the half-weighted eigenfunctions ¢; using
some basis set, the following nice properties are obtained:
1. Local basis functions can be used. This follows from limy|o ¢i(x) =
hm\x\—)oo ,U“% (X)Ti (X) — 0.
2. The normalization condition requires a nonweighted scalar product:

l; L;
(3.4) (liylj)p—1r = <m M1—J/2>
= (i, ;) = dij.

3. When (x;, x;) is analytically computable and ¢, = >, ¢;ix;, then (¢, dr) is
also analytically computable.

4. The first half-weighted eigenfunction has eigenvalue 1 and is identical to the
half-weighted stationary density

(3.5) ¢1(x) = = p(x)"2.

5. When models of y(x)/? and ¢y, are available, the Rayleigh coefficient in (3.1)

can be estimated numerically as the autocorrelation of ?/2

©w
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6. When defining a propagator P* in half-weighted space via

(3.6) p-(y) ="P(r) opo

(
pr(y) = [ dxp(x)p(x,y; 7),

X

x x 1/2
u]zy()}32 B / o MZE)R/ ? ugyi” 7 P00y )

/prO XYa )7

(7) © po (%),

then P* is self-adjoint and has orthogonal eigenfunctions

(3.7) iXi = P (7).

It follows from Theorem 2.2 that the exact eigenvalues are calculated by the Rayleigh
coefficients of the exact eigenfunctions,

(3.8) M= (1t | € ten) = ack(udois 7),

while they are approximated from below by the Rayleigh coefficients of the approxi-
mate eigenfunctions,

(3.9) Nz A= (i ¢ pEdi) = act(u i 7).

This Rayleigh coeflicient can be directly sampled: for a given trajectory z;, it can be
estimated as

(3.10) N2 i =B (i)~ A i (2) e r) " dilanr)|

Thus, for a given trajectory z;, the optimal eigenfunctions ¢; can be calculated
by maximizing the Rayleigh coefficient, using, e.g., the Ritz or the Roothaan—Hall
method.

3.2. Gaussian basis functions. In complex dynamical processes, such as molec-
ular dynamics of biomolecules, one has to devise basis sets that can be evaluated in
high dimensions. While the present work provides merely a starting point for identi-
fying appropriate basis sets that go beyond common choices such as the step function
basis or the committor basis, we here suggest a possible choice that is potentially
applicable to the molecular dynamics setting. Empirically, it has been found that
the stationary densities of biomolecules in the essential subspace are often clustered
[18]. Therefore, we put forward the idea that u(x)'/? and the other half-weighted
eigenfunctions can be approximated by a Gaussian mixture.

Let us thus assume that the state space € is a metric space with distance d(x,y),
and let us model the half-weighted invariant density /i(x)'/? in terms of Gaussian
basis functions:

1 2 X Yz)
(3.11) / ZazeXp< 3 ) :
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where a; € R, y; € 0, and o € R are amplitude, mean, and shape parameters. The
invariant density can then be analytically given:

=) = (S (45322))

(3.12) - Za exp ( (x Y ) +3 20,05 exp < d(x’w;;zd(x’yﬂ')) .

i<j

Furthermore, consider that the half-weighted eigenfunctions can be given in terms
of the same Gaussian basis:

(3.13) me eXp< ;ﬁ”) ;

where by; must be appropriately chosen to guarantee orthogonality with respect to
the invariant density. The corresponding unweighted eigenfunctions 7 are

op(x) > briexp (_%)

(3.14) r(z) = BRI azexp( d(xyo)

which does not have a simple form, but can be evaluated pointwise. In order to enforce
the normalization (¢, ¢;) = dx; we consider

(3.15) (w, 1) = /dxzzbmsz exp (_ d(x,yi) +d(x, yj)) |

202

which can be analytically evaluated when (2 is a Euclidean space.

Using Gaussian ansatz functions in half-weighted space may thus have important
practical benefits. However, other basis sets, especially sets of radial basis functions
other than Gaussians, may also be a good choice for high-dimensional systems that
deserves further investigation.

4. Numerical examples.

4.1. Metastable potential from a Gaussian stationary density. The ex-
ample is chosen such that it is tractable by direct grid discretization so as to be able
to generate a reference solution. Different optimization methods for the variational
problem and choices of basis sets are considered and illustrated. See Figure 4.1 for
an illustration of the potential and its eigenvectors.

Let 2 = R be our state space with points = € €. First, a “Gaussian hat” function
is defined via

252

m s o (-E52E)

where a € R is the mean and s € R the standard deviation. We define a stationary
density from two Gaussians:

() = # (gh(z, ~2,1) + gh(z,2,1)) .
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Fia. 4.1. Two-well potential with Smoluchowski dynamics, 7 = 0.025. (a) Double-Gaussian
density pu(x), (b) the corresponding potential U(x), (c) the half-weighted density ¢1(x) = /u(x),
(d) slowest-process eigenfunction ¢2(x) from direct numerical solution.

The corresponding dimensionless generating potential is given by

(4.2) U(x) = —In (u(@)),

which exerts a force on a particle at position x of

(43) Fl) = VU @) = — ()
' N () do '

Using Smoluchowski dynamics and Euler discretization, a time-step z — y is
given by

(4.4) y=az+7f(z)+ V2,

where 1 is a normally distributed random variable (white noise). The transition
density can hence be written as

(4.5) p(x,y;7) = Ny(z + 7f(z), V27)
and the correlation density is given by
(4.6) Clz,y;7) = p(x) pla, y; 7).

Now we are concerned about estimation of eigenfunctions. The first half-weighted
eigenfunction is the square root of the stationary density,

(4.7) ¢1 =/ u(x),

such that ¢?(x) = u(x). We here assume p(x) to be known, although in practice it
must be estimated.

4.2. Ritz method with characteristic functions (Markov state model).
We aim to approximate the eigenvalues and eigenfunctions of the true propagator via
the Ritz method described in section 2.4. Here, a basis set x = (x1(),...,xn(z))
consisting of N = 20 characteristic functions in the range = € [—6, 6] is defined by

4.8 ! 1
( . ) Xi = F [—6+40.64, —5.440.64]

2
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F1a. 4.2. Approzimation to the eigenfunction shown in Figure 4.1 using different methods and
basis sets. The true eigenvalues are 1.0, 0.998913. The reference solutions are shown as dotted lines,
while the approzimations are shown as solid lines. (a), (b) MSM/Ritz method with 20 characteristic
functions in the range x € [—6,6]. Eigenvalues 1.0, 0.980384. (c), (d) Ritz method with a basis set
of 20 Hermite functions. Eigenvalues 1.0, 0.998913. (e), (f) Roothaan—Hall method with a bastis set
of 11 Gaussians. Eigenvalues 1.0, 0.995507.

2 4

where 1[4 is the characteristic function that is 1 on the interval [a, b] and 0 outside,
and m; = fsi p(x)dz is the stationary probability of the set S; = [-6+0.6i, —5.4+0.64].
The corresponding density-matrix H = [h;;] € RV *Y defined by (Dirac notation)

(4.9) hij = (xi | C | x5)
takes the form

Vs dx [ dy Clx,y; 7)

4.10 hij
(4.10) e

as in section 2.6.

The H matrix was calculated by direct numerical integration using Mathematica
and the eigenvalue problem was subsequently solved, yielding the optimal coefficient
vectors ¢; and co that provide the approximations ¢1 =~ ¢1, ¢2 =~ ¢o and A\ =~
A2, A2 & Xy. The results are given in Figures 4.2(a) and (b), indicating that the
eigenvalues are approximated to two significant digits, while the eigenfunctions retain
a significant discretization error that arises from the step-function basis used.

4.3. Ritz method with a Hermite basis. In order to arrive at a smooth
solution we employ the Ritz method with a smooth orthogonal function basis. Here,
we choose the Hermite functions, defined by

d’ 2

(4.11) Vi(z) = (-1)%‘(zii!\/%)*l/?ef/?%e*w .
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The Hermite functions are local (lim|y| o Xi(x) — 0) and are thus useful in model-
ing the behavior of the eigenfunctions ¢ where the stationary density is significantly
larger than zero. The basis functions are defined to be the normalized Hermite func-
tions with

(4.12) i = ——

(Vi i)

such that (x;,x;) = 0ij-

Using the basis set x = [0, - -, X19]7, the H matrix was calculated by direct nu-
merical integration using Mathematica and the Ritz method was used to approximate
eigenvalues and eigenfunctions of the propagator. As shown in Figures 4.2(c) and (d),
a nearly perfect approximation of both eigenvalues and eigenfunctions is obtained
even though the number of basis functions used is identical to the MSM approach
of the previous section. However, the MSM approach has the advantage that it can
be employed in high-dimensional spaces, which is not the case with Hermite basis
functions.

4.4. Roothaan—Hall method with a Gaussian basis. In order to attempt
solving high-dimensional problems, one must resort to simple basis functions, ideally
ones with analytical properties that can be practically evaluated in high-dimensional
spaces. Therefore, we here suggest the use of Gaussian basis functions as described
in section 3.2. In the one-dimensional case, the Gaussians used are

(4.13) ghi(z) = exp <— 52

Here, we use 0 = 1 and y; = (—5,—4,...,4,5). Gaussian basis functions are not
orthogonal. We therefore calculate the overlap matrix S = [s;;] with

(4.14) sij = <gfol<§,ghj> 2 2
= /_OO dzr exp (— it 7)) 2—;2(33 —Y5) >

that can be evaluated analytically. The H = [h,p] matrix is again defined by (Dirac
notation)

(415) hay = <gha | ¢ | ghb>'

Using the Roothaan—Hall method (section 2.5), the best approximation to the

propagator eigenfunctions ¢?i = (b;, x) are found by the eigenvectors of the generalized
eigenvalue problem

(4.16) S~'Hb; = \;b;.

As shown in Figures 4.2(c) and (d), an also nearly perfect approximation of both
eigenvalues and eigenfunctions is achieved even though the basis is smaller than the
previous basis sets. Since the Gaussian basis set is a good candidate for being used in
high-dimensional spaces, this is probably the most useful result so far. Note that the
matrix inversion S~! can be efficiently calculated with sparse matrix methods when
a cutoff is used to set nearly nonoverlapping pairs with hq, ~ 0 to 0.
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Fic. 4.3. Nonlinear optimization of the propagator eigenfunctions. (a) Value of o depending
on y2 and with fized so = 0.8. (b) Value of A2 depending on sz with fized y2 = 1. (c) Approzimation
to ¢2 with yo = 1, sa = 0.8 (solid line), and reference solution for ¢o (dotted line).

4.5. Nonlinear optimization. The previous methods used exclusively linear
combinations of basis functions. A greater degree of freedom in approximating the
propagator eigenfunctions is achieved by using additional shape parameters in the
basis functions. This, however, leads to a nonlinear optimization problem that is in
general difficult to solve and may have multiple optima. However, we briefly illustrate
the approach on our one-dimensional example. We make the ansatz for the second
half-weighted eigenfunction:

(417) Bo(2) = — (~gh(a, . 2) + 9h(z, 2, 52)),

00 1/2
Z=[/ da:[—gh(x,y2,52>+gh(x,y2,52>]} .

The normalization constant makes sure that (¢, o) = 1. The constraint (¢, ¢1)
= 0 is here ensured by the fact that ¢; is an even function and ¢, is an odd function.

The optimal parameters g, and § are found by maximizing the Rayleigh coeffi-
cient:

(4.18) (92, §2) = arg max

Y2,82

<¢32(y2,52) |C| ¢32(y2,82)>
M1/2 M1/2 :

Figure 4.3 shows the results of varying y» and ss as well as the local optimum
for y = 1 and s, = 0.8. In this case, a good approximation to the eigenvector could
be achieved with a 2-term ansatz function. However, the general usefulness of the
nonlinear approach for high-dimensional problems remains to be evaluated.

4.6. Quartic potential. As a second numerical example, we use the diffusion
in a one-dimensional quartic potential,

(4.19) V(z) = 32* — 622 + 3,

which has two minimum positions at x = £1. We seek to estimate the second dom-
inant eigenvalue \o(7) and the corresponding timescale to = ~ et Py applying
the Roothaan—Hall method above with Gaussian functions. We will then compare the
results to those obtained from an MSM discretization. First, we generate a sample
trajectory of the process as in (4.4). Here, we used a time-step 7 = 1073 and a total
number of steps N = 107. From this sample, we computed an estimate fi of the sta-
tionary density. We then computed the MSM transition matrix and its eigenvalues,
using a discretization of the state space into 100 sets.
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Fia. 4.4. Application of the Roothaan—Hall method with Gaussian basis functions to a one-
dimensional diffusion process, compared to a 100-set MSM discretization computed with the EMMA
package [38]. (a) The potential function V. (b) Estimated stationary density [1. (c) Comparison of
the second largest implied timescale t2(7), plotted against the lag time given in integer multiples m
of the simulation step 7. (d) The second eigenfunction I as estimated from both methods.

For the application of the Roothaan-Hall method, we picked thirteen Gaussian
functions ¢; with centers at

(4.20) z=-2,-15-1.2,—1,-0.8,-0.5,0,0.5,0.8,1,1.2, 1.5, 2.

The variances were set to 1 for the functions centered at x = —2,—1.5,0,1.5, 2,
and to 0.5 for all others. Those functions were used as half-weighted basis functions,
meaning that we computed the entries of the H-matrix according to

N—m

> AT 2 @)bi(e) i @) @hm)

k=1

1

4.21 hij =
( ) J N —m

where m is an integer corresponding to the lag time m7. We similarly estimated the
S-matrix and then solved the generalized eigenvalue problem (2.42).

The results displayed in Figure 4.4 show that we not only get a good approxima-
tion of both the first and second eigenfunction in terms of smooth functions, but most
importantly the second largest eigenvalue A2(7) and the corresponding time scale to
can be estimated comparably well with both methods. While 100 sets were used for
the MSM discretization, only thirteen basis function were used for the Roothaan—Hall
method.

5. Conclusions and outlook. Here, we have formulated a variational princi-
ple for Markov processes where the dominant eigenfunctions are approximated by
maximizing a Rayleigh coefficient, which—in the limit of the exact eigenfunctions—is
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identical to the true eigenvalues. This is the formulation needed to attack the prob-
lem of estimating the slow processes in stochastic dynamical systems with a much
wider methodology than by the presently used class of Markov state models (MSMs).
In particular, the entire toolbox of quantum mechanics, in which many decades of
research have gone into the development of eigenfunction approximation methods for
high-dimensional systems, becomes available.

From a practical point of view, the main achievement of the present study is that
the Rayleigh coefficient can be estimated from simulation data, as it is equivalent to
an autocorrelation function of the appropriately weighted test function. The autocor-
relation estimates are such that they can be fed by many short simulations distributed
across state space and do not require the direct simulation of the slow processes in a
single long trajectory. This is an important advantage in dealing with the sampling
problem that arises in simulating metastable dynamical systems.

One major use of the present approach will be to facilitate the development of
adaptive discretization algorithms of high-dimensional state spaces for the compu-
tational characterization of complex dynamical processes. The Rayleigh coefficient
derived here represents a practically accessible and theoretically solid functional to
guide such an adaptive discretization algorithm. In contrast to MSMs, such an ap-
proximation approach does not necessarily need to use the same basis set for all
eigenfunctions. Especially for reversible dynamics, different eigenfunctions can be
approximated separately, thus possibly permitting the use of relatively small basis
sets.

For a given class of dynamical systems, a basis set must be selected that is appro-
priate for modeling the regularity of the solution. For high-dimensional processes such
as molecular dynamics, Gaussian basis functions might be a workable solution since
they can be well combined with clustering-based identification of center positions and
permit the analytical calculation of some quantities such as the overlap integral. An
interesting alternative approach is to build the basis set upon weakly coupled subsets
of internal molecular coordinates, as suggested in the mean field approach developed
n [17]. The usefulness of these and other approaches for complex molecular systems
will be investigated in future studies. Furthermore, subsequent studies will deal with
the error caused by the projection on a finite-dimensional subspace depending on the
choice of basis functions, as well as with statistical considerations, such as the efficient
evaluation of uncertainties of the estimated Rayleigh coefficients.
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