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Department for Mathematics and Computer Science, Freie Universitaẗ Berlin, 14195 Berlin, Germany

ABSTRACT: The eigenvalues and eigenvectors of the molecular dynamics
propagator (or transfer operator) contain the essential information about the
molecular thermodynamics and kinetics. This includes the stationary distribution,
the metastable states, and state-to-state transition rates. Here, we present a
variational approach for computing these dominant eigenvalues and eigenvectors.
This approach is analogous to the variational approach used for computing
stationary states in quantum mechanics. A corresponding method of linear
variation is formulated. It is shown that the matrices needed for the linear
variation method are correlation matrices that can be estimated from simple MD
simulations for a given basis set. The method proposed here is thus to first define
a basis set able to capture the relevant conformational transitions, then compute the
respective correlation matrices, and then to compute their dominant eigenvalues and
eigenvectors, thus obtaining the key ingredients of the slow kinetics.

1. INTRODUCTION

Biomolecules, in particular proteins, often act as small but
highly complex machines. Examples range from allosteric
changes1,2 to motor proteins, such as kinesin, which literally
walks along microtubules,1,3 and the ribosome, an enormous
complex of RNA molecules and proteins responsible for the
synthesis of proteins in the cell.1,4 To understand how these
biomolecular machines work, it does not suffice to know their
structure, that is, their three-dimensional shape. One needs to
understand how the structure gives rise to the particular
conformational dynamics by which the function of the molecule
is achieved. Protein folding is the second field of research in
which conformational dynamics plays a major role. Proteins are
long polymers of amino acids that fold into particular three-
dimensional structure. The astonishingly efficient search for this
native conformation in the vast conformational space of the
protein can be understood in terms of its conformational
dynamics. Besides time-resolved experiments, molecular dynamics
simulations are the main technique to investigate conformational
dynamics. To date, these simulations yield information on the
structure and dynamics of biomolecules at a spatial and temporal
resolution, which cannot be paralleled by any experimental
technique. However, the extraction of kinetic models from
simulation data is far from trivial, since kinetic information cannot
be inferred from structural similarity.5,6 Similar structures might be
separated by large kinetic barriers, and structures that are far apart
in some distance measure might be kinetically close.
A natural approach toward modeling the kinetics of molecules

involves the partitioning of conformation space into discrete
states.7−17 Subsequently, transition rates or probabilities between
states can be calculated, either based on rate theories,7,18,19 or
based on transitions observed in MD trajectories.6,13,15,16,20−22 The
resulting models are often called transition networks, Master
equation models, or Markov (state) models (MSM),23−25 where
“Markovianity” means that the kinetics are modeled by a

memoryless jump process between states. In Markov state models,
it is assumed that the molecular dynamics simulations used
represent an ergodic, reversible, and metastable Markov process.25

Ergodicity means that every possible state would be visited in an
infinitely long trajectory and every initial probability distribution of
the system converges to a Boltzmann distribution. Reversibility
reflects the assumption that the system is in thermal equilibrium.
Metastability means that there are parts of the state space in which
the system remains over time scales much longer than the fastest
fluctuations of the molecule. In order to construct an MSM,
the conformational space of the molecule is discretized into
nonoverlapping microstates, and the observed transitions between
pairs of microstates are counted. One obtains a square matrix with
transition probabilities, the so-called transition matrix, from which
a wide range of kinetic and thermodynamic properties can be
calculated. The equilibrium probability distribution (in the chosen
state space) is obtained as the first eigenvector of the transition
matrix. Directly from the matrix elements, one can infer kinetic
networks and transition paths.26,27 The dominant eigenvectors of
the transition matrix are used to identify metastable states.28−32

Each dominant eigenvector can be interpreted as a kinetic process,
and the associated eigenvalue is related to the time scale on which
this process occurs.25 All this information can be combined to
reconstruct the hierarchical structure of the energy landscape.31,33

Finally, transition matrices represent a very useful framework to
connect data from time-resolved experiments with simulation
data.34,35 Over the past decade, extensive knowledge on which
factors determine the quality of an MSM has been accumulated.
For example, MSMs that are constructed using the internal
degrees of freedom of the molecule tend to yield better results
than those that were constructed using global descriptors of
the structure (H-bond patterns, number of native contacts).31
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Also, degrees of freedom that are not included in the model should
decorrelate on short time scales from those that are included.36

Naturally, the sampling of the transitions limits the accuracy of an
MSM, and tools to account for this error have been
developed.37−39 On the whole, the research field has matured to
a point at which well-tested protocols for the construction of
MSMs from MD data have been established,25,40,41 and software
to construct and validate Markov state models from MD data is
freely available.42,43 MSMs have been applied to analyze the
conformational dynamics of peptides5,31,44 and of small protein
domains, such as Villin head piece,45 pin WW,46 FiP35 WW.45

Recently, it has become possible to analyze the folding
equilibria of full fast-folding proteins.47−49 MSMs have also
been used to investigate conformational changes, such as the
self-association step in the maturation of HIV-protease,50

ligand binding,51 or the oligomerization of peptide fragments
into amyloid structures.52

An important aspect that has limited the routine use of
MSMs is the difficulty to obtain a state space discretization that
will give rise to an MSM that precisely captures the slow
kinetics. The high-dimensional molecular space is usually first
discretized using clustering methods in some metric space. The
form and location of these clusters, sometimes called “MSM
microstates”, are crucial for determining the quality of the
estimated transition rates.53−55 Various metrics and clustering
methods have been attempted for different molecular systems.
Small peptides can be well described by a direct discretization
of their backbone dihedrals.31 It was suggested in ref 56 to use a
dihedral principal component analysis to reduce the dihedral
space to a low-dimensional subspace and subsequently cluster
this space using, for example, k-means. A rather general metric
is the pairwise minimal RMSD-metric in conjunction with some
clustering method, such as k-centers or k-medoids.25,30,41

Recently, the time-lagged independent component analysis
(TICA) method was put forward, a dimension reduction
approach in which a “slow” low-dimensional subspace is
identified, which has been shown to provide improved MSMs
over previously employed metrics.57,58

In recent years, it has been established that the precision of
an MSM depends on how well the discretization approximates
the shape of the eigenfunction of the underlying dynamical
operator (propagator or transfer operator) of the dynamics.55

When the dynamics are metastable, these eigenfunctions will be
almost constant on the metastable states, and change rapidly at
the transition states.59 Thus, methods that have sought to construct
a maximally metastable discretization30,60 have been relatively
successful for metastable dynamics. However, the MSM can be
improved by using a nonmetastable discretization, especially when
it finely discretizes the transition states, so as to trace the variation
of the eigenfunction in these regions.25,55 An alternative way of
achieving a good resolution at the transition state without using a
fine discretization is to use appropriately placed smooth basis
functions, such as the smooth partition-of-unity basis functions
suggested in refs 61−63. The core-based discretization method
proposed in ref 11 effectively employs a smooth partition-of-unity
basis defined by the committor functions between sets.64

All of the above methods have in common that they attempt
to construct an appropriate discretization based on the
simulation data. This has a two-fold disadvantage: (1) different
simulation runs will produce different discretizations, making
them hard to compare; (2) data-based clusters have no intrinsic
meaning. Interpretation in terms of structural transitions must
be recovered by analyzing the molecular configurations

contained in specific clusters. With all of the above methods,
choosing an appropriate combination of the metric, the
clustering method, and the number and the location of clusters
or cores is still often a trial-and-error approach.
Following the recently introduced variational principle for

metastable stochastic processes,65 we propose a variational
approach to molecular kinetics. Starting from the fact that
the molecular dynamics propagator is a self-adoint operator,
we can formulate a variational principle. Using the method of
linear variation we derive a Roothaan−Hall-type generalized
eigenvalue problem that yields an optimal representation of
eigenvectors of the propagator in terms of an arbitrary basis
set. Both ordinary MSMs using crisp clustering and MSMs
with a smooth discretization can be understood as special
cases of this variational approach. In contrast to previous
MSMs using smooth discretization, our basis functions do not
need to be a partition of unity, although this choice has
some merits.
Besides its theoretical attractiveness, the variational approach

has some advantages over MSMs. First, the data-driven
discretization is replaced by a user-selection of an appropriate
basis set, typically of internal molecular coordinates. The
chosen basis set may reflect chemical intuitionfor example,
basis functions may be predefined to fit known transition states
of backbone dihedral angles or formation/dissociation of
tertiary contacts between hydrophobically or electrostatically
interacting groups. As a result, one may obtain a precise model
with fewer basis functions needed than discrete MSM states.
Moreover, each basis function is associated with a chemical
meaning, and thus, the interpretation of the estimated
eigenfunctions becomes much more straightforward than for
MSMs. When using the same basis set for different molecular
systems of the same class, one obtains models that are directly
comparable in contrast to conventional MSMs. The represen-
tation of the propagator eigenfunctions can still be systemati-
cally improved by adding more basis functions or by varying the
basis set.
Our method is analogous to the method of linear variation

used in quantum chemistry.66 The major difference is that the
propagator is self-adjoint with respect to a non-Euclidean scalar
product, whereas the Hamiltonian is self-adjoint with respect to
the Euclidean scalar product. The derivation of the method is
detailed in section 2 and Appendices A−C.

2. THEORY
2.1. Dynamical Propagator. Consider the conformational

space X of an arbitrary molecule consisting of N atoms, that is,
the 3N−6-dimensional space spanned by the internal degrees of
freedom of the molecule. The conformational dynamics of the
molecule in this space can be represented by a dynamical
process {xt}, which samples at a given time t a particular point
xt ∈ X. In this context, xt is often called a trajectory. This
process is governed by the equations of motion, and it can be
simulated using standard molecular dynamics programs. We
assume that an implementation of thermostatted molecular
dynamics is employed, which ensures that xt is time-
homogeneous, Markovian, ergodic, and reversible with respect
to a unique stationary density (usually the Boltzmann
distribution). We introduce a propagator formulation of these
dynamics, following ref 65. Readers familiar with this approach
might want to skip to section 2.2.
Next, consider an infinite ensemble of molecules of the same

type, distributed in the conformational space according to some
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initial probability density |ρ0(x)⟩. This initial probability density
evolves in time in a definite manner that is determined by the
aforementioned equations of motion for the individual
molecules. We assume that the time evolution is Markovian

τ = ∈ | =

= ∈ | =
τ

τ

+



p x y y x y y x x

x y y x x

( , ; )d ( d ) (1)

( d ) (2)

t t

0

where τ is a finite time step, and p(x,y;τ) is the so-called
transition density, which is assumed to be independent of time
t (time-homogeneous). Figure 1 shows an example of the

time evolution of a probability density in a one-dimensional
two-well potential. Equation 2 implies that the probability of
finding a molecule in conformation y dy at time t + τ depends
only on the conformation x it has occupied one time step
earlier, and not on the sequence of conformations is has visited
before t. The unconditional probability density of finding a
molecule in conformation y at time t + τ is obtained by
integrating over all starting conformations x

∫ρ τ ρ=τ+ y p x y x x( ) ( , ; ) ( )dt X t (3)

This equation, in fact, defines an operator (τ) that propagates
the probability density by a finite time step τ

ρ τ ρ| ⟩ = | ⟩τ+ x x( ) ( ) ( )t t (4)

ρ τ ρ| ⟩ = ⟩τ+ x x( ) ( ) ( )t n
n

t (5)

(τ) is called a propagator, and the time step τ is often called
the lag time of the propagator. One says the propagator is
parametrized with τ. Such as p(x,y;τ), the propagator (τ) in
eq 5 is time-homogeneous; that is, it does not depend on t. The
way it acts on a density |ρ(x,t)⟩ is not a function of the time t at
which this density occurs but only a function of the time step τ
by which the density is propagated (Figure 1).
The way the propagator acts on the density can be

understood in terms of its eigenfunctions {|lα(x)⟩} and
associated eigenvalues {λα}, which are defined by the following
eigenvalue equation

τ λ⟩ = | ⟩α α αl x l x( ) ( ) ( ) (6)

For the class of processes which are discussed in this
publication, the eigenfunctions form a complete set of  N3 .
Hence, any probability density (in fact any function) in this

space can be expressed as a linear combination of {|lα(x)⟩}.
Equation 5 can be rewritten as

∑

∑

ρ λ| ⟩ = ⟩

= | ⟩

τ
α

α α α

α
α

τ
α

+

− α

x c l x

c l x

( ) ( ) (7)

e ( ) (8)

t n
n

n t/

where n is the number of discrete time steps τ. The
eigenfunctions can be interpreted as kinetic processes that
transport probability density from one part of the conforma-
tional space to another and thus modulate the shape of the
overall probability density. See ref 25 for a detailed explanation
of the interpretation of eigenfunctions. The eigenvalues are
linked to the time scales tα on which the associated kinetic
processes take place by

τ
λ

= −α
α

t
ln( ) (9)

These time scales are of particular interest because they may
be accessible using various kinetic experiments.35,67−69

Given the aforementioned properties of the molecular
dynamics implementation, (τ) is an operator with the
following properties. A more detailed explanation can be
found in Appendix A.

• (τ) has a unique stationary density; that is, there is a
unique solution |π(x)⟩ to the eigenvalue problem
(τ)|π(x)⟩ = |π(x)⟩.

• Its eigenvalue spectrum is bounded from above by λ1 = 1.
Also, λ1 is the only eigenvalue of absolute value equal
to one.

• (τ) is self-adjoint with respect to the weighted scalar
product ⟨f |g⟩π−1 = ∫X f(x)g(x)π−1(x)dx. Consequently, its
eigenfunctions |lα(x)⟩ form an orthonormal basis of the
Hilbert space of square-integrable functions with respect
to this scalar product. Its eigenvalues are real and can be
numbered in descending order:

λ λ λ= > ≥ ≥1 ...1 2 3 (10)

2.2. Variational Principle and the Method of Linear
Variation. A variational principle can be derived for any
operator whose eigenvalue spectrum is bound (either from
above or from below) and whose eigenvectors form a complete
basis set and are orthonormal with respect to a given scalar product.
The variational principle for propagators was derived in ref 65. The
derivation is analogous to the derivation of the variational principle
of the quantum-mechanical Hamilton operator.66 For convenience,
we give a compact derivation in Appendix B.
The variational principle can be summarized in three steps. First,

for the exact eigenfunction |lα(x)⟩, the following equality holds:

τ λ τ⟨ | | ⟩ = =α α π α
τ− α−l l( ) ( ) e t/

1 (11)

The expression ⟨f | (τ)|f⟩π−1 is the analogue of the quantum-
mechanical expectation value and has the interpretation of a time-
lagged autocorrelation (c.f. section 2.3). The autocorrelation of the
α-th eigenfunction is identical to the α-th eigenvalue.
Second, for any trial function |f⟩ that is normalized according

to eq 64, the following inequality holds:

∫τ π τ

λ

⟨ | | ⟩ =

≤ =

π
−

−f f f x x f x x( ) ( ) ( ) ( ) ( )d (12)

1 (13)
X

1

1

1

Figure 1. Illustration of two propagators acting on a probability
density |ρt(x)⟩. Gray surface: time evolution of |ρt(x)⟩. Black dotted
line: snap shots of |ρt(x)⟩. Cyan line: equilibrium density |π(x)⟩ to
which |ρt(x)⟩ eventually converges. Red, blue: propagators with
different lag times τ, which propagate an initial density by a time step τ
in time.
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where equality ⟨f | (τ)|f⟩π−1 = λ1 is achieved if and only if |f⟩ = |l1⟩.
This is at the heart of the variational principle.
Third, this inequality is applicable to other eigenfunctions:

When |f⟩ is orthogonal to the α − 1 first eigenfunctions, the
variational principle will apply to the α-th eigenfunction/
eigenvalue pair:

τ λ⟨ | | ⟩ ≤π α−f f( ) 1 (14)

β α⟨ | ⟩ = ∀ = −β π−f l 0 1, ..., 11 (15)

This variational principle allows to formulate the method of
linear variation for the propagator. Again, the derivation
detailed in ref 65 is analogous to the derivation of the method
of linear variation in quantum chemistry.66 The trial function
|f⟩ is linearly expanded using a basis of n basis functions
{|φi⟩}i = 1

n

∑ φ| ⟩ = | ⟩
=

f a
i

n

i i
1 (16)

where ai are the expansion coefficients. We only choose basis
sets consisting of real-valued functions because all eigenvectors
of (τ) are real-valued functions. Consequently, the expansion
coefficients ai are real numbers. However, the basis set does not
necessarily have to be orthonormal. In the method of linear
variation, the expansion coefficients ai are varied such that the
right-hand side of eq 13 becomes maximal, while the basis
functions are kept constant. The variation is carried out under
the constraint that |f⟩ remains normalized with respect to
eq 64 using the method of Lagrange multipliers. For details,
see Appendix C. The derivation leads to a matrix formulation
of eq 6:

λ=Ca Sa (17)

a is the vector of expansion coefficients ai, C is the (time-
lagged) correlation matrix with elements

φ τ φ= ⟨ | | ⟩π−C ( )ij i j 1 (18)

and S is the overlap matrix of the basis set, where the overlap
is calculated with respect to the weighted scalar product

φ φ= ⟨ | ⟩π−Sij i j 1 (19)

Solving the generalized eigenvalue problem in eq 17, one
obtains the first n eigenvectors of (τ) expressed in the basis
{|φi⟩}i = 1

n and the associated eigenvalues λα.
2.3. Estimating the Matrix Elements. To solve the

generalized eigenvalue equation (eq 17), we need to calculate
the matrix elements Cij. In the quantum chemical version of
the linear variation approach, the matrix elements Hij for the
Hamiltonian (see Appendix A) are calculated directly with
respect to the chosen basis, either analytically or by solving
the integral Hij = ⟨φi| |φj⟩ numerically. Such a direct
treatment is not possible for the matrix elements of the
propagator. However, we can use a trajectory xt of a single
molecule, as it is generated for example by MD simulations, to
sample the matrix elements and thus obtain an estimate for
Cij. For this, we introduce a basis set {|χi⟩} consisting of the n
cofunctions of the original basis set {|φi⟩} by weighting the
original functions with π−1

χ π φ φ π χ= ⇔ =−x x x x x x( ) ( ) ( ) ( ) ( ) ( )i i i i
1

(20)

Inserting eq 20 into the definition of the matrix elements Cij
(eq 18), we obtain

∫ ∫

φ τ φ

χ π τ πχ

χ τ π χ

= ⟨ | | ⟩

= ⟨ | | ⟩

=

π

π

−

−

C

z p y z y y y z

( )

( )

( ) ( , , ) ( ) ( )d d

ij i j

i j

X X i j

1

1

(21)

The last line of eq 21 has the interpretation of a time-lagged
cross-correlation between the functions χi and χj

∫ ∫χ χ τ χ

χ

= = | =

× =

τ+



z x z x y

y x y y z

cor( , , ): ( ) ( ) (22)

( ) ( )d d (23)

i j X X i t t

j t

which can be estimated from a time-continuous time series xt of
length T as

or from a time-discretized time series xt as

where NT = T/Δt, nτ = τ/Δt, and Δt is the time step of the
time-discretized time series. In the limit of infinite sampling and
for an ergodic process, the estimate approaches the true value

Note that the second line in eq 21 can also be read as the
matrix representation of an operator which acts on the space
spanned by {|χi⟩}, the cofunctions of {|φi⟩} (eq 20). This is the
so-called transfer operator (τ).

τ χ π τ πχ

χ τ χ

= ⟨ | | ⟩

= ⟨ | | ⟩

π

π

−C ( ) ( ) (27)

( ) (28)

ij i j

i j

1

with

∫τ
π

τ π| ⟩ =f z
z

p y z y f y y( ) ( )
1
( )

( , , ) ( ) ( )d
X (29)

In particular, (τ) has the same eigenvalues as the propagator,
and its eigenfunctions are the cofunctions of the propagator
eigenfunctions:

π=α α
−r x x l x( ) ( ) ( )1

(30)

We will sometimes refer to the functions |rα⟩ as right
eigenfunctions. For more details on the transfer operator the
reader is referred to ref 59.

2.4. Crisp Basis SetsConventional MSMs. Markov
state models (MSMs), as they have been discussed up to now
in the literature,23−25,28,30,31,40−43,55,70 arise as a special case of
the proposed method. Namely, the choice of basis sets in
conventional MSMs is restricted to indicator functions, that is,
functions that have the value 1 on a particular set Si of the
conformational space X and the value 0 otherwise

χ| ⟩ =
∈⎧⎨⎩x

x S
( )

1 if

0 otherwisei
iMSM

(31)
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In effect, this is a discretization of the conformational space,
for which the estimation of the matrix C (eq 25) reduces to
counting the observed transitions zij between sets Si and Sj

∑ χ χ=
−

=
−

τ

τ

=

−

+

τ

τ
C

N n
x x

z

N n

1
( ) ( ) (32)

(33)

ij
T t

N n

j t i t n

ij

T

1

MSM MSM
T

It is easy to verify,65 that the overlap matrix S is a diagonal
matrix, with entries πi equal to the stationary probabilities of the
sets:

∫ π π= =S x x( )d :ii
S

i
i (34)

Thus, the eigenvalue problem eq 17 becomes

λ= ΠCa a (35)

λ= aTa (36)

where C is the correlation matrix, ∏ = S = diag{π1,...,πn} is the
diagonal matrix of stationary probabilities, and T =∏−1C is the
MSM transition matrix. Thus, a is a right eigenvector of
the MSM transition matrix. As the equations above provide the
linear variation optimum, using MSMs and their eigenvectors
corresponds to finding an optimal step-function approximation
of the eigenfunctions. Moreover, we can use the weighted
functions

= Πα αb a (37)

and see that they are left eigenfunctions of T:

λΠ = Π− −T b b1 1 (38)

λΠ =−b C bT T1 (39)

λ=b T bT T (40)

Note that the crisp basis functions form a partition of unity,
meaning that their sum is the constant function with value one,
which is the first exact eigenfunction of the transfer operator
(τ). For this reason, any state space partition that is a partition
of unity solves the approximation problem of the first
eigenvalue/eigenvector pair exactly: the first eigenvalue is
exactly λ1 = 1, the expansion coefficients ai

l of the first
eigenvector |r1⟩ are all equal to one. The corresponding first left
eigenvector b1 = ∏a1 fulfills the stationarity condition:

=b b TT T
1 1 (41)

and is, therefore, when normalized to an element sum of 1, the
stationary distribution π of T.
2.5. Stationary Probability Distribution in the Varia-

tional Approach. All previous MSM approachesincluding
the most common “crisp” cluster MSMs but also the smooth
basis function approaches used in refs 24, 61, and 64have
directly or indirectly used basis functions that are a partition of
unity. The reason for this is that using such a partition of unity,
one can recover the exact first eigenvector and, thus, a
meaningful stationary distribution.
In the present contribution, we give up the partition of unity

condition, in order to be able to fully exploit the variational
principle of the propagator with an arbitrary choice of basis sets.
Therefore, we must investigate whether this approach is still

meaningful and can give us “something” like the stationary
distribution.
Revisiting the MSM case, the stationary probability numbers

πi can be interpreted as stationary probabilities of the sets Si, or,
in other words, they measure the contribution of these sets to
the full partition function Z:

π =
Z
Zi

i
(42)

∫ ∫ χ= =− −Z xe dx ( )e dxi
S

v x

X i
v x( ) MSM ( )

i (43)

∑ ∑π = =
Z
Z

1
i

i
i

i

(44)

where v(x) is a reduced potential.
If we move on to a general basis, we can maintain a similar

interpretation of the vector b1 = Sa1, as long as the first estimated
eigenvalue λ1 remains equal to one. If we use the general definition
of Zi as the local density of the basis function |χi⟩:

∫ χ= −Z x x( )e di
X i

v x( )
(45)

Then, we still have

=b
Z
Ci

i
(46)

for all i, where

∫ ∑ χ= −C x x( )e d
X i

i
v x( )

(47)

Interestingly, this relation also becomes approximately true if
the estimated eigenvalue λ1 approaches one, as proved in
Appendix D. As a result, the concept of the stationary
distribution is still meaningful for basis sets that do not form
a partition of unity. Moreover, it is completely consistent with
the variational principle, because the vector b1 becomes a
probability distribution in the optimum λ1 = 1.

2.6. Estimation Method. We summarize by formulating a
computational method to estimate the eigenvectors and
eigenvalues of the associated propagator from a time series
(trajectory) xt using an arbitrary basis set.

1. Choose a basis set {|χi⟩}.
2. Estimate the matrix elements of the correlation matrix C

and of the overlap matrix S using eq 25 with lag times τ
and 0, respectively.

3. Solve the generalized eigenvalue problem in eq 17. This
yields the α-th eigenvalue λα of the propagator (and the
transfer operator) and the expansion coefficients ai

α of
the associated eigenvector.

4. The eigenvectors of the transfer operator are obtained
directly from the expansion coefficients ai

α via

∑ χ| ⟩ = | ⟩α
α

=

r a
i

n

i i
1 (48)

5. If an estimate of the stationary density π is available, the
eigenvectors of the propagator (τ) are obtained from

∑ ∑φ πχ| ⟩ = | ⟩ = | ⟩α
α α

= =

l a a
i

n

i i
i

n

i i
1 1 (49)
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3. METHODS
3.1. One-Dimensional Diffusion Models. 3.1.1. Simu-

lations. We first consider two examples of one-dimensional
diffusion processes xt governed by Brownian dynamics. The
process is then described by the stochastic differential equation

= −∇ +x v x t D Bd ( )d 2 dt t t (50)

where v is the reduced potential energy (measured in units of
kBT, where kB is the Boltzmann constant and T is the
temperature), D is the diffusion constant, and dBt denotes the
differential of Brownian motion. For simplicity, we set all of the
above constants equal to one. The potential function is given by
the harmonic potential

= ∈ v x x x( ) 0.5 ,2
(51)

in the first case, and by the periodic double-well potential

π π= + ∈ −v x x x( ) 1 cos(2 ), [ , ) (52)

in the second case. In order to apply our method, we first
produced finite simulation trajectories for both potentials. To
this end, we picked an (also artificial) time-step Δt = 10−3, and
then used the Euler−Maruyama method, where position xk+1 is
computed from position xk as

= − Δ ∇ + Δ+x x t v x D t y( ) 2k k k k1 (53)

∼y (0, 1)k (54)

In this way, we produced simulations of 5 × 106 time-steps
for the harmonic potential and 107 time-steps for the double-
well potential.
3.1.2. Gaussian Model. We apply our method with Gaussian

basis functions to both problems. To this end, n = 2,3,...,10
centers are chosen at uniform distance between x = −4 and x =
4 for the harmonic potential and between x = −π and x = π for
the double-well potential. In the latter case, the basis functions
are modified to be periodic on [−π,π). Subsequently, an
“optimal” width of the Gaussians is picked by simply trying out
several choices for the standard deviations between 0.4 and 1.0
and using the one which yields the highest second eigenvalue.
From this choice, the matrices C and S are estimated and the
eigenvalues, eigenfunctions, and implied time scales are computed.
3.1.3. Markov Models. As a reference for our methods, we

also compute Markov state models for both processes. To this
end, the simulation data is clustered into n = 2,3,...,10 disjoint
clusters using the k-means algorithm. Subsequently, the EMMA
software package43 is used to estimate the MSM transition
matrices and to compute eigenvalues and time scales.
3.2. Alanine Dipeptide. 3.2.1. MD Simulations. We

performed 20 simulations of 200 ns of all-atom explicit solvent
molecular dynamics of alanine dipeptide using the AMBER
ff-99SB-ILDN force field.71 The detailed simulation setup is
found in Appendix E.
3.2.2. Gaussian Model. Similar to the previous example, we

use periodic Gaussian functions that only depend on one of the
two significant dihedral angles of the system (see section 4.2)
to apply our method. For both dihedrals, we separately perform
a preselection of the Gaussian trial functions. To this end, we
first project the data onto the coordinate, then we solve the
projected optimization problem for all possible choices of
centers and widths, and then pick the ones yielding the highest
eigenvalues. In every step of the optimization, we select three
out of four equidistributed centers between −π and π, and one

of eleven standard deviations between 0.04π and 0.4π. In this
way, we obtain three Gaussian trial functions per coordinate,
resulting in a full basis set of six functions. Having determined
the parameters for both angles, we use the resulting trial
functions to apply our method as before. A bootstrapping
procedure is used to estimate the statistical uncertainty of the
implied time scales.
Note that the variations of basis functions described here to

find a “good” basis set could be conducted once for each amino
acid (or short sequences of amino acids) for a given force field
and then be reused.

3.2.3. Markov Models. This time, we cluster the data into
n = 5, 6, 10, 15, 20, 30, 40, 50 clusters, again using the k-means
algorithm. From these cluster-centers, we build Markov models
and estimate the eigenvalues and eigenvectors using the EMMA
software.

3.3. Deca-alanine. 3.3.1. MD Simulations. We performed
six 500 ns all-atom explicit solvent molecular dynamics
simulations of deca-alanine using the Amber03 force field.
See Appendix E for the detailed simulation setup.

3.3.2. Gaussian Model. As before, we use Gaussian basis
functions that depend on the backbone dihedral angles of the
peptide, which means that we now have a total of 18 internal
coordinates. A preselection of the trial functions is performed
for every coordinate independently, similar to the alanine
dipeptide example. In order to keep the number of basis
functions acceptably small, we select two trial functions per
coordinate. As before, their centers are chosen from four
equidistributed centers along the coordinate, and their standard
deviations are chosen from eleven different values between
0.04π and 0.4π. We also build a second Gaussian model using
five functions per coordinate, with equidistributed centers and
standard deviations optimized from the same values as in the
first model. Having determined the trial functions, we estimate
the matrices C and S and compute the eigenvalues and
eigenvectors and again use bootstrapping to estimate
uncertainties.

3.3.3. Markov Models. We construct two different Markov
models from the dihedral angle data. The first is built using
k-means clustering with 1000 cluster centers on the full data
set, whereas for the second, we divide the ϕ−ψ plane of every
dihedral pair along the chain into three regions corresponding
to the α-helix, β-sheet, and left-handed α-helix conformation,
see section 4.2. Thus, we have three discretization boxes for all
dihedral pairs, which yields a total of 83 discrete states to which
the trajectory points are assigned.

4. RESULTS

We now turn to the results obtained for the four systems
presented in the previous section.

4.1. One-dimensional Potentials. The two one-dimensional
systems are toy examples where all important properties are
either analytically known or can be computed arbitrarily well
from approximations. For the harmonic potential, the stationary
distribution is just a Gaussian function

π
π

| ⟩ = | ⟩ = −
⎛
⎝⎜

⎞
⎠⎟x l x

x
( ) ( )

1
2

exp
21

2

(55)

The exact eigenvalues λα(τ) are given by

λ τ α τ= − −α( ) exp( ( 1) ) (56)
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and the associated right eigenfunction |rα⟩ is given by the
(α − 1)-th normalized Hermite polynomial

| ⟩ = | ⟩ ∼ − −α α
α

α

α−
−

−

−

⎛
⎝⎜

⎞
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⎛
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⎠⎟r x H x

x
x

x
( ) ( ) ( 1) exp

2
d

d
exp

21
1

2 1

1

2

(57)

The left halves of panels A and B in Figure 2 show the
harmonic potential and its stationary distribution, as well as the
second right and left eigenfunction. The sign change of |l2⟩
indicates the oscillation around the potential minimum, which
is the slowest equilibration process. Note, however, that there is
no energy barrier in the system; that is, this process is not
metastable. On the right-hand sides of parts A and B in Figure 2,
we see the same for the periodic double-well potential. The
invariant density is equal to the Boltzmann distribution, where the
normalization constant was computed numerically. The second
eigenfunction was computed by a very fine finite-element
approximation of the corresponding Fokker−Planck equation,
using 1000 linear elements. The slowest transition in the system is
the crossing of the barrier between the left and right minimum.
This is reflected in the characteristic sign change of the second
eigenfunction. Parts A and B of Figure 2 also show two choices of
basis sets that can be used to approximate these eigenfunctions:
A three element Gaussian basis set and a three state crisp set.
The resulting estimates of the right and left eigenfunctions are
displayed in Figure 2C. Already with these small basis sets, a good
approximation is achieved.
Let us analyze the approximation quality of both methods

in more detail. To this end, we first compute the
L2-approximation error between the estimated second
eigenfunction and the exact solution |r2⟩, that is, the integral

We expect this error to decay if the basis sets grow. Indeed,
this is the case, as can be seen in the upper graphics of Figure
3A and B, but the error produced by the Gaussian basis sets
decays faster. Even for the 10-state MSM, we still have a
significant approximation error. Another important indicator is
the implied time scale tα(τ), associated to the eigenvalue λα(τ).
It is the inverse rate of exponential decay of the eigenvalue,
given by tα(τ) = −τ/λα(τ) and corresponds to the equilibration
time of the associated slow transition. The exact value of tα is
independent of the lag time τ. However, if we estimate the
time scale from the approximate eigenvalues, the estimate
will be too small due to the variational principle. However,
with increasing lag time, the error is expected to decay, as
the approximation error also decays with the lag time. The
faster this decay occurs, the better the approximation will
be. In the lower graphics of Figure 3A and B, we see the lag
time dependence of the second time scale t2 for growing
crisp and Gaussian basis sets. We observe that it takes only
four to five Gaussian basis functions to achieve much faster
convergence compared even to a 10-state Markov model.
For seven or more Gaussian basis functions, we achieve
precise estimates even for very short lag times, which cannot
be achieved with Markov models with a reasonable number
of states.

4.2. Alanine Dipetide. Alanine dipeptide (Ac-Ala-NHMe,
i.e. an alanine linked at either end to a protection group) is
designed to mimic the dynamics of the amino acid alanine in a
peptide chain. Unlike the previous examples, the eigenfunctions
and eigenvalues of alanine dipeptide cannot be calculated
directly from its potential energy function but have to be

Figure 2. Illustration of the method with two one-dimensional potentials, the harmonic potential in the left half and a periodic double-well potential
in the right half of the figure. (A) Potential v together with its invariant distribution π (shaded) next to two possible choices of basis functions: a
three-element crisp basis and a set of three Gaussian functions. (B) Exact right and left second eigenfunctions, |r2⟩ and |l2⟩. (C) Approximation
results for these second eigenfunctions obtained from the basis sets shown.
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estimated from simulations of its conformational dynamics.
However, alanine dipeptide is a thoroughly studied system;
many important properties are well-known, though their
estimated values depend on the precise potential energy
function (force field) used in the simulations. Most
importantly, it is known that the dynamical behavior can be
essentially understood in terms of the two backbone dihedral
angles ϕ and ψ: Figure 4A shows the free energy landscape
obtained from population inversion of the simulation, where
white regions correspond to nonpopulated states. We find the
three characteristic minima in the upper left, central left, and
central right part of the plane, which correspond to the β-sheet,
α-helix, and left-handed α-helix conformation of the amino
acid. The two slowest transitions occur between the left half
and the left handed α-helix, and from β-sheet to α-helix within
the main well on the left, respectively.
Figure 4B shows the weighted second and third eigenfunc-

tions. They are obtained from applying our method with a total
of six basis functions (three for each dihedral), and from an
MSM constructed from 30 cluster-centers. The resulting
estimates of |r2⟩ and |r3⟩ are then weighted with the population
estimated from the trajectory in order to emphasize the regions
of phase space which are related to the structural transitions.
Almost identical results are achieved, and the sign pattern of
both approximations clearly indicates the aforementioned
processes.
Lastly, in Figure 4C, we again investigate the convergence of

the slowest implied time scales. Different MSMs with a growing

Figure 3. Analysis of the discretization error for both 1D-potentials. In
the upper figure of both panels, we show the L2-approximation error of
the second eigenfunction from both crisp basis functions and Gaussian
basis functions, dependent on the size of the basis set. The lower
figures show the convergence of the second implied time scales t2(τ)
dependent on the lag time τ. Dotted lines represent the crips basis sets
and solid lines the Gaussian basis sets. The colors indicate the size of
the basis.

Figure 4. Illustration of the method using the 2D dihedral angle space
(ϕ,ψ) of alanine dipeptide trajectory data. (A) Free energy landscape
obtained by direct population inversion of the trajectory data. (B, first
row) Color-coded contour plots of the second and third
eigenfunctions of the propagator (|l2,⟩ |l3⟩), obtained by approximating
the functions |r2⟩ and |r3⟩ by a Gaussian basis set with six functions, cf
eq 48, and weighting the results with the estimated stationary
distribution from part A. (B, second row) Color-coded contour plots
of the second and third eigenfunctions of the propagator (|l2⟩, |l3⟩),
obtained by approximating the functions |r2⟩ and |r3⟩ by a Markov
state model with 30 cluster-centers, c.f. eq 48, and weighting the
results with the estimated stationary distribution from part A. (C)
Convergence of implied time scales tα(τ) (in picoseconds)
corresponding to the second and third eigenfunction, as obtained
from Markov models using n = 5, 6, 10, 15, 20, 30, 40, 50 cluster-
centers (thin lines), compared to the time scales obtained from the
Gaussian model with a total of six basis functions (thick green line).
Thin vertical bars indicate the error estimated by a bootstrapping
procedure.
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number of crisp basis functions (cluster-centers) were used and
compared to the six basis function Gaussian model. The colors
indicate the number of basis functions used; the thinner lines
correspond to the Markov models, whereas the thick solid line
is obtained from the Gaussian model. In agreement with the
previous results, we find that 30 or more crisp basis functions
are needed to reproduce an approximation quality similar to
that of a six-Gaussian basis set.
4.3. Deca-alanine. As a third and last example, we study

deca-alanine, a small peptide that is about five times the size
of alanine dipeptide. A sketch of the peptide is displayed in
Figure 5A.
The slow structural processes of deca-alanine are less obvious

compared to alanine dipeptide. The Amber03 force field used
in our simulation produces a relatively fast transition between

the elongated and the helical state of the system, with an
associated time scale of 5−10 ns. As we can see in Figure 5B,
we are able to recover this slowest time scale with our method,
t2 converges to roughly 6.5 ns for both models. Comparing this
to the two Markov models constructed from the same
simulation data, we see that both yield slightly higher time
scales: The k-means based MSM returns a value of about 8 ns
and the finely discretized one ends up with 8.5 ns. Note that the
underestimate of the present Gaussian basis set is systematic,
likely due to the fact that all basis functions were constructed as
a function of single dihedral angles only, thereby neglecting the
coupling between multiple dihedrals.
Despite this approximation, we are able to determine the

correct structural transition. In order to analyze this, we
evaluate the second eigenfunction |r2⟩, obtained from the
smaller model, for all trajectory points, and plot a histogram of
these values as displayed in Figure 5C. We then select all frames
that are within close distance of the peaks of that histogram and
produce overlays of these frames as shown underneath. Clearly,
large negative values of the second eigenfunction indicate that
the peptide is elongated, whereas large positive values indicate
that the helical conformation is attained. This is in accord
with a similar analysis of the second right Markov model
eigenvector: In Figure 5D, we show overlays of structures taken
from states with the most negative and most positive values of
the second eigenvector, and we find that the same transition is
indicated, although the most negative values correspond to a
slightly more bent arrangement of the system.
In summary, it is possible to use a comparatively small basis

of 36 Gaussian functions to achieve results about the slowest
structural transition which are comparable to those of MSMs
constructed from about 1000 and 6500 discrete states,
respectively. However, the differences in the time scales point
to a weakness of the method: The fact that increasing the
number of basis functions does not alter the computed time
scale indicates that coordinate correlation cannot be appropri-
ately captured using sums of one-coordinate basis functions. In
order to use the method for larger systems, we will have to
study ways to overcome this problem.

5. CONCLUSIONS
We have presented a variational approach for computing the
slow kinetics of biomolecules. This approach is analogous to
the variational approach used for computing stationary states in
quantum mechanics, but it uses the molecular dynamics
propagator (or transfer operator) rather than the quantum-
mechanical Hamiltonian. A corresponding method of linear
variation is formulated. Since the MD propagator is not
analytically tractable for practically relevant cases, the matrix
elements cannot be directly computed. Fortunately, these
matrix elements can be shown to be correlation functions that
can be estimated from simple MD simulations. The method
proposed here is thus, to first define a basis set able to capture
the relevant conformational dynamics, then compute the
respective correlation matrices, and then to compute their
dominant eigenvalues and eigenvectors, thus obtaining the key
ingredients of the slow kinetics.
Markov state models (MSMs) are found to be a special case

of the variational principle formulated here, namely for the case
that indicator functions (also known as crisp sets or step
functions) on the MSM clusters are used as a basis set.
We have applied the variational approach using Gaussian

basis functions on a number of model examples, including

Figure 5. Illustration of the method using dihedral angle coordinates
of the deca alanine molecule. (A) Graphical representation of the
system. (B) Convergence of the estimated second implied time scale
(in nanoseconds) depending on the lag time. We show the results of
both Gaussian models and of both the k-means based MSM and the
adapted MSM. Thin vertical bars indicate the error estimated by a
bootstrapping procedure. (C) Assignment of representative structures
for the second slowest process: The histogram shows how the values
of the second estimated eigenfunction |r2⟩ of the smaller model are
distributed over all simulation trajectories. Underneath, we show an
overlay of structures taken at random from the vicinity of the peaks at
−2.7, −1.6, 0.7, and 1.3. (D) Overlays of structures corresponding to
the most negative (left) and most positive (right) values of the second
Markov model eigenvector, taken from the k-means MSM.
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one-dimensional diffusion systems and simulations of the alanine
dipeptide and deca-alanine in explicit solvent. Here, we have used
only one-dimensional basis sets that were constructed on single
coordinates (e.g., dihedral angles), but it is clear that multidimen-
sional basis functions could be straightforwardly used. Despite the
simplicity of our bases, we could recover, and in most cases
improve the results of n-state MSMs with much less than n basis
functions in the applications shown here.
Note that practically all MSM approaches presented thus far

use data-driven approaches to find the clusters on which these
indicator functions are defined. Such a data-driven approach
impairs the comparability of Markov state models of different
simulations of the same system, and even more so of Markov
state models of different systems. (Essentially, every Markov
state model that has been published so far has been
parametrized with respect to its own unique basis set). In
contrast, the method proposed here allows to define basis sets
that are, in principle, transferable between different molecular
systems. This improves the comparability of models made for
different molecular systems. The second―and possibly
decisive―advantage of the proposed method is that the
basis sets can be chosen such that they reflect knowledge about
the conformational dynamics or about the forcefield with which
xt has been simulated. It is thus conceivable that optimal basis
sets are constructed for certain classes of small molecules or
molecule fragments (e.g., amino acids or short amino acid
sequences) and then combined for computing the kinetics of
complex molecular systems.
As mentioned earlier, future work will have to focus on a

systematic basis set selection and on an efficient use of
multidimensional trial functions. Related to this is the question
of model validation and error estimation. Due to the use of
finite simulation data, use of a very fine basis set can lead to a
growing statistical uncertainty of the estimated eigenvalues and
eigenfunctions. In order to improve the basis set while
balancing the model error and the statistical noise, a procedure
to estimate this uncertainty is needed. While the special case of
a Markov model allows for a solid error-theory based on the
probabilistic interpretation of the model,72 this is an open topic
here and will have to be treated in the future.

■ APPENDIX A

Propagators of Reversible Processes
In the following, we explain in more detail the properties of the
dynamical propagator (τ), as introduced in section 2.
Stationary Density. For any time-homogeneous propagator,

there exists at least one stationary density |π(x)⟩, which does
not change under the action of the operator: (τ)|π(x)⟩ =
|π(x)⟩. Another way of looking at this equation is to say that
|π(x)⟩ is an eigenfunction of (τ) with eigenvalue λ1 = 1. It is
guaranteed that π(x) ≥ 0 everywhere as the transfer density is
normalized. We additionally assume that π(x) > 0. In molecular
systems, π(x) is a Boltzmann density and π(x) > 0 is obtained
when the temperature is nonzero and the energy is finite for all
molecular configurations.
Bound Eigenvalue Spectrum. The eigenvalue λ1 = 1 always

exists for any propagator. It is also the eigenvalue with the
largest absolute value: |λi| ≤ 1; that is, the eigenvalue spectrum
of (τ) is bound from above by the value 1. This is due to the
fact that the transfer density is normalized

∫ τ =p x y y( , , )d 1
X (59)

That is, the probability of going from state xt = x to anywhere
in the state space (including x) during time τ has to be 1.73,74

Ergodicity. If the dynamics of the molecule are ergodic, then
λ1 is nondegenerate. As a consequence, there is only one
unique stationary density |π(x)⟩ associated to (τ).

Reversibility. If the dynamics of the individual molecules in
the ensemble occur under equilibrium conditions, they fulfill
reversibility (also sometimes called “detailed balance” or “micro-
reversibility”) with respect to the stationary distribution π

π τ π τ= ∀x p x y y p y x x y( ) ( , ; ) ( ) ( , ; ) , (60)

Equation 60 implies that if the ensemble is in equilibrium, that is,
its systems are distributed over the state space according to |π(x)⟩,
the number of systems going from state x to state y during time τ
is the same as the number of systems going from y to x. Or, the
density flux from x to y is the same as in the opposite direction,
and this is true for all state pairs {x,y}. For reversible processes, the
stationary density becomes an equilibrium density and is equal to
the Boltzmann distribution. In the following, we will only consider
operators of reversible processes.
A consequence of reversibility is that λ1 is the only eigenvalue

with absolute value 1. Together with the previous properties,
the eigenvalues can be sorted by their absolute value

λ λ λ| | = > | | ≥ | |1 ...1 2 3 (61)

Self-adjoint Operator. Another consequence of reversibility
is self-adjointness of the propagator, that is,

τ τ⟨ | | ⟩ = ⟨ | | ⟩π π− −f g g f( ) ( )1 1 (62)

with respect to the weighted scalar product ⟨·|·⟩π−1

∫ π⟨ | ⟩ =π
−

−f g g x x f x x( ) ( ) ( )d
X

1
1

(63)

and the norm

| | = ⟨ | ⟩π−f f f 1 (64)

where π−1(x) = 1/π(x) is the reciprocal function of π(x) and
the bar denotes complex conjugation. This is verified directly:
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In the second line, we have used reversibility (eq 60) to
replace p(x,y,τ) by p(y,x,τ)π(y)/π(x). Note that we could omit
the complex conjugate in eq 63 because f, (τ), and g are real-
valued functions. Self-adjointness of (τ) implies that its
eigenvalues are real-valued, and its eigenfunctions form a
complete basis of  N3 which is orthonormal with respect to the
weighted scalar product ⟨·|·⟩π−1

δ⟨ | ⟩ =α β π αβ−l l 1 (70)

Comparison to the QM Hamilton Operator. With these
properties of the propagator, eq 6 can be compared to the
stationary Schrödinger equation |χ = E|χ⟩. Both equations
are eigenvalue equations of self-adjoint operators with a bound
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eigenvalue spectrum. The equations differ in some mathemat-
ical aspects: (τ) is an integral operator, whereas is a
differential operator; (τ) is self-adjoint with respect to a
weighted scalar product, whereas is self-adjoint with respect
to the Euclidean scalar product. Also, they are not analogous in
their physical interpretation. In contrast to the quantum-
mechanical Hamilton operator, which acts on complex-valued
wave functions, (τ) propagates real-valued probability
densities. Moreover, the eigenfunctions of the propagator do
not represent quantum states, such as the ground and excited
states, they represent the stationary distribution and the
perturbations to the stationary distribution from kinetic
processes. Nonetheless, the mathematical structures of eq 6
and the stationary Schrödinger equation are similar enough that
some methods which are applied in quantum chemistry can be
reformulated for the propagator.

■ APPENDIX B

Variational Principle
The variational principle for propagators is derived and
discussed in detail in ref 65. We expand a trial function in
terms of the eigenfunctions of (τ)

∑| ⟩ = | ⟩
α

α αf c l
(71)

where the αth expansion coefficient is given as

= ⟨ | ⟩α π−c l fa 1 (72)

The norm (eq 64) of the trial function |f⟩ is then given as

∑ ∑ ∑⟨ | ⟩ = ⟨ | ⟩ =π
α β

α β α β π
α

α− −f f c c l l c2
1 1

(73)

We therefore require that |f⟩ is normalized

⟨ | ⟩ =π−f f 11 (74)

With this, an upper bound for the following expression can be
found

∑ ∑

∑ ∑

∑

∑

τ τ

λ

λ

λ λ

⟨ | | ⟩ = ⟨ | | ⟩

= ⟨ | ⟩

=

≤ = ⟨ | ⟩ =

π
α β

α β α β π

α β
α β β α β π

α
α α

α
α π

− −

−

−

f f c c l l

c c l l

c

c f f

( ) ( ) (75)

(76)

(77)

1 (78)

2

2
1 1

1 1

1

1

and hence

λ τ= ≥ ⟨ | | ⟩π−f f1 ( )1 1 (79)

The above functional of any trial function is smaller than
or equal to one, where the equality holds if and only if
|f⟩=|l1⟩.
Furthermore, from the equations above it directly follows

that for a function |f i⟩ that is orthogonal to eigenfunctions
|l1⟩,...,|li−1⟩:

⟨ | ⟩ = ∀ = −π−f l j i0 1, ..., 1i j 1 (80)

the variational principle results in

τ λ⟨ | | ⟩ ≤π−f f( ) i1 (81)

■ APPENDIX C

Method of Linear Variation
Given the variational principle for the transfer operator (eq 79),
the function |f⟩ can be linearly expanded using a basis of n basis
functions {|φi⟩}i = 1

n

∑ φ| ⟩ = | ⟩
=

f a
i

n

i i
1 (82)

where ai are the expansion coefficients. All basis functions are
real functions, but the basis set is not necessarily orthonormal.
Hence, the expansion coefficients are real numbers. In the
method of linear variation, the expansion coefficients ai are
varied such that the right-hand side of eq 79 becomes maximal,
while the basis functions are kept constant. The derivation leads
to a matrix formulation of eq 6. Solving the corresponding
matrix diagonalization problem, one obtains the first n
eigenvectors of (τ) expressed in the basis {|φi⟩}i = 1

n and the
associated eigenvalues. Inserting eq 16 into eq 79, one obtains
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where we have introduced the matrix element of the correlation
matrix C

φ φ= ⟨ | | ⟩π−Cij i j 1 (86)

The maximum of the expression on the right-hand side in eq
79 is found by varying the coefficients ai, that is,

∑∂
∂

⟨ | | ⟩ = ∂
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π
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−
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f f
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(87)

0 1, 2, ... (88)
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i j ij
1

1

under the constraint that |f⟩ is normalized

∑ ∑φ φ⟨ | ⟩ = ⟨ | ⟩ =

=

π π
= =

− −f f a a a a S (89)

1 (90)

ij

n

i j i j
ij

n

i j ij
1 1

1 1

Sij is the matrix element of the overlap matrix S defined as

φ φ φ φ= ⟨ | ⟩ = ⟨ | ⟩π π− −Sij i j j i1 1 (91)

To incorporate the constraint in the optimization problem,
we make use of the method of Lagrange multipliers
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The variational problem then is
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where, in the third line, we have used that Cij = Cji and Sij = Sji
(eqs 62 and 91). Equation 95 can be rewritten as a matrix
equation

λ=Ca Sa (97)

which is a generalized eigenvalue problem, and identical to

λ=−S Ca a1 (98)

where a is a vector which contains the coefficients ai. The
solutions of eq 98 are orthonormal with respect to an inner
product which is weighted by the overlap matrix S:

δ⟨ | | ⟩ =a S af g
fg (99)

where δfg is the Kronecker delta. Then, any two functions |f⟩ =
∑iai

f |φi⟩ and |g⟩ = ∑iai
g|φi⟩ are orthonormal with respect to

the π−1-weighted inner product, as it is expected for the
eigenfunctions of the transfer operator

∑ ∑φ φ

δ

⟨ | ⟩ = ⟨ | ⟩

= ⟨ | | ⟩

=

π π− −f g a a

a S a

(100)
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(102)

i
i
f

i j j
g

j

f g

fg

1 1

■ APPENDIX D

Left Eigenvectors and Stationary Properties
We want to show that the first “left” eigenvector b1=Sa1
approximates the stationary distribution even for basis sets
that do not form a partition of unity.
Let us assume we have a sequence of basis sets {|χi⟩}j, such

that the corresponding first eigenvalue λ1j converges to 1. Let us
denote the local densities of basis set j by Zi

j, the total density
from eq 47 by Cj, and the entries of the normalized first left
eigenvector of basis set j by bi

j. We show

− →b
Z
C

0i
j i

j

j (103)

as j → ∞, or in other words,

− →b C Z 0i
j j

i
j

(104)

To do so, we multiply by the inverse partition function 1/Z
and rewrite this expression as

∫ ∫∑
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We can use eq 48 to pull the summation over k into the second
argument of the brackets:

∑
χ

χ
χ χ− =

⟨ | ⟩

⟨∑ | ⟩
⟨ | ⟩ − ⟨ | ⟩

π

π
π πZ
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( ) 1 1i
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i
j ij j

l lj j l
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1

1 (107)

From the convergence of the eigenvalue λ1j toward 1, it
follows that the approximate first eigenfunction |r1j⟩ converges
to the true first eigenfunction, the constant function with value
one, in the scace Lπ

2. This can be shown using an orthonormal
basis expansion. Consequently, we can use the Cauchy−
Schwarz inequality to estimate the expression

χ χ χ|⟨ | ⟩ − ⟨ | ⟩ | = |⟨ | − ⟩ |π π πr r1 1ij j ij ij j1 1 (108)

χ≤ −r 1ij j1 (109)

As the second term tends to zero by the L2-convergence, the
complete expression likewise decays to zero, provided that the
L2-norms of the basis functions remain bounded, which is
reasonable to assume. By a similar argument, we can show that
the remaining fraction

χ

χ

⟨∑ | ⟩

⟨∑ | ⟩
π

πr

1l lj

l lj j1 (110)

converges to 1, provided that the L2-norm of the sum of all
basis functions also remains bounded. Combining these two
observations, we can conclude that eq 107 tends to 0, which
was to be shown.

■ APPENDIX E

Simulation Setups
Alanine dipeptide. We performed all-atom molecular

dynamics simulations of acetyl-alanine-methylamide (Ac-Ala-
NHMe), referred to as alanine dipeptide in the text, in explicit
water using the GROMACS 4.5.575 simulation package, the
AMBER ff-99SB-ILDN force field,71 and the TIP3P water
model.76 The simulations were performed in the canonical
ensemble at a temperature of 300 K. The energy-minimized
starting structure of Ac-Ala-NHMe was solvated into a cubic
box with a minimum distance between solvent and box wall of
1 nm, corresponding to a box volume of 2.72 nm3 and 651 water
molecules. After an initial equilibration of 100 ps, 20 production
runs of 200 ns each were performed, yielding a total simulation
time of 4 μs. Covalent bonds to hydrogen atoms were constrained
using the LINCS algorithm77 (lincs_iter = 1, lincs_order = 4),
allowing for an integration time step of 2 fs. The leapfrog
integrator was used. The temperature was maintained by the
velocity-rescale thermostat78 with a time constant of 0.01 ps.
Lennard-Jones interactions were cut off at 1 nm. Electrostatic
interactions were treated by the Particle−Mesh Ewald (PME)
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algorithm79 with a real space cutoff of 1 nm, a grid spacing of
0.15 nm, and an interpolation order of 4. Periodic boundary
conditions were applied in the x-, y-, and z-direction. The
trajectory data was stored every 1 ps.
Deca-alanine. We performed all-atom molecular dynamics

simulations of deca alanine, which is protonated at the amino
terminus and deprotonated at the carboxy terminus, using the
GROMACS 4.5.5 simulation package,75 the Amber03 force
field, and the TIP3P water model. A completely elongated
conformation was chosen as an initial structure.
The structure was solvated in a cubic box of volume V =

232.6 nm3, with 7647 pre-equilibrated TIP3P water molecules.
First, an equilibration run of 500 ps in the NVT ensemble with
full position restraints, using the velocity-rescale thermostat,
was carried out. This was followed by a 500 ps NPT
equilibration run. The temperature was set to T = 300 K.
The equilibration run was followed by a 500 ns production run,
again at T = 300 K. Two temperature coupling groups were
used with a velocity-rescale thermostat and a time constant of
0.01 ps.78 Periodic boundary conditions were applied in the x-,
y-, and z-direction. For the long-range electrostatic interaction
PME was used with a pme-order of 4 and a Fourier grid spacing
of 0.15 nm. Covalent bonds to hydrogen bonds were
constrained using the LINCS algorithm,77 allowing for a 2 fs
time step. A leapfrog integrator was used. Data was saved every
1 ps, resulting in 5 × 105 data frames. Six independent
simulations from the same equilibrated configuration were
carried out resulting in 3 μs total data.
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(31) Noe,́ F.; Horenko, I.; Schütte, C.; Smith, J. C. J. Chem. Phys.
2007, 126, 155102.
(32) Ruzhytska, S.; Jacobi, M. N.; Jensen, C. H.; Nerukh, D. J. Chem.
Phys. 2010, 133, 164102.
(33) Bowman, G. R.; Pande, V. S. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 10890−10895.
(34) Noe,́ F.; Doose, S.; Daidone, I.; Löllmann, M.; Sauer, M.;
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(62) Röblitz, S. Statistical Error Estimation and Grid-free Hierarchical
Refinement in Conformation Dynamics. Ph.D. thesis, Freie Uni-
versitaet Berlin, Berlin, 2009.
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