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Essential information about the stationary and slow kinetic properties of macromolecules is contained
in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent
variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when
a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of
basis functions is given by products of one-coordinate basis functions, which describe changes along
internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach
is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our
results suggest that the high-dimensional eigenfunctions can be well approximated with relatively
small basis set sizes. C

2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940774]

I. INTRODUCTION

Molecular dynamics (MD) simulations have matured
to be a standard tool to explore the conformations and
conformational dynamics of biological macromolecules, such
as proteins.1 In MD simulations, the time integration of
classical mechanics is combined with stochastic contributions,
which ensure that certain thermodynamic quantities such as
the temperature remain constant on average. For any atomic
configuration x in the configuration space⌦, the classical force
acting on the system is given by the gradient of an empirical
potential energy function V (x), which is the model for the
molecular system under investigation. Such a potential energy
function is usually the sum of many terms involving only a
few atoms, typically depending on intramolecular distances
⇢
i j

, bond angles ↵
i jk

, and dihedral angles �
i jkl

. A standard
form of V is

V (x) =
X

bonds(i, j)
Vbond(⇢i j)

+
X

angles(i, j,k)
Vangle(↵i jk

)

+
X

dihedrals(i, j,k,l)
Vdih(�i jkl)

+
X

nonbonded(i, j)
Vnonbonded(⇢i j) + Vother(x). (1)

The nonbonded terms normally comprise the van der Waals
and electrostatic interactions. The long-ranged part of the
nonbonded forces, which might be computed through particle-
field methods such as particle mesh Ewald (PME), is included
in Vother(x).

a)feliks.nueske@fu-berlin.de and frank.noe@fu-berlin.de

The extraction of essential stationary and kinetic informa-
tion from a set of trajectories {x

t

}, generated by MD simula-
tions, has been an active field of research in recent years. A
very powerful approach has been the construction of Markov
state models (MSMs, also Markov models in short):2–7 first, the
sampled molecular conformations are clustered and the trajec-
tories {x

t

} are re-written into discrete time series. Second,
the conditional transition probabilities between the clusters are
estimated. These transition probabilities form a row-stochastic
transition matrix best approximating the discretized dynamics.
Software for the automatic construction and estimation of
Markov models is available.8,9 Markov models have initiated
a large amount of follow-up research, e.g., on the analysis of
transition pathways through Markov models,10,11 connecting
molecular simulation and experimental observables via Mar-
kov models12–15 and applications to various molecular pro-
cesses.10,16–19 A particularly interesting result from this line
of research is that the essential information of the molecule’s
stationary and kinetic quantities is contained in the dominant
eigenvalues and eigenfunctions of the dynamical operator of
the molecular dynamics2 and that the eigenvalues and eigen-
vectors of a Markov model transition matrix can be a good
approximation thereof.20

A more recent development has generalized this result.
Instead of constructing a Markov model, one can define any
set of basis functions that map molecular configurations to
real values and then try to approximate the eigenvalues and
eigenfunctions of the MD operator by a linear combination
of these basis functions.21 This approach, named variational
approach to conformation dynamics (VAC), may improve
our ability to approximate and interpret the high-dimensional
eigenfunctions. The construction of a Markov model requires
a state space discretization that is typically obtained by
some clustering routine. The discrete states obtained in this
way lack a clear physical meaning in many cases. Within

0021-9606/2016/144(5)/054105/14/$30.00 144, 054105-1 © 2016 AIP Publishing LLC

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  84.187.186.229 On: Tue, 02 Feb
2016 17:35:40

http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
http://dx.doi.org/10.1063/1.4940774
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:feliks.nueske@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
mailto:frank.noe@fu-berlin.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4940774&domain=pdf&date_stamp=2016-02-02


054105-2 Nüske et al. J. Chem. Phys. 144, 054105 (2016)

the more general variational approach, we can replace the
discretization step by the use of functions that more faithfully
describe configuration changes in molecules. We note that
there is a close connection to quantum mechanics, where a
craft of choosing suitable basis sets for modeling specific
chemical transitions has evolved. However, it is yet unclear
which choices of basis functions are suitable to model
classical conformational changes of macromolecules. We were
prompted to model such conformational changes in terms of
the elementary internal coordinates ⇢

i j

, ↵
i jk

, and �
i jkl

, as
the potential in Eq. (1) depends on those, see Ref. 22 for
some first results. However, these internal coordinates are
coupled, thus we must allow our basis functions to represent
couplings between internal coordinates in order to provide a
good approximation of the high-dimensional eigenfunctions.
In Ref. 23, a basis set for peptides with coupling between
adjacent �/ backbone angles was designed, and products
between the basis functions were considered.

In general, this idea leads to the following approach: for
all d elementary internal coordinates x

p

, p = 1, . . . ,d under
consideration, we select n one-coordinate basis functions
f

p

ip
(x

p

), i

p

= 1, . . . ,n, defined on the single coordinate x

p

.
These functions should be chosen such as to be able
to represent every significant variation along the single
coordinates. A coupled basis set is then obtained by
considering all possible products between one-coordinate
basis functions,

� =
(

f

1
i1
(x1) f

2
i2
(x2) . . . f

d

id
(x

d

), i1, i2, . . . , id = 1, . . . ,n
)
. (2)

Clearly, the size of basis set Eq. (2) will combinatorially
explode, as for n one-coordinate functions, we have n

d

possible products, making even the sheer enumeration of
them unfeasible for relatively small molecules.

Consequently, we need a systematic method to determine
a sparse representation of the eigenfunctions from basis
set Eq. (2). The high degree of redundancy among the set
of intramolecular coordinates (for instance, among many
distances) suggests that finding such a representation should be
possible. Here, we propose a new method based on the tensor-
train (TT) format and its learning algorithm, the alternating
linear scheme (ALS). Tensor-trains have been introduced by
Refs. 24 and 25. However, they have been known in quantum
physics as matrix product states since the 1990s, see Ref. 26.
A version of the ALS was introduced by Ref. 27 as the
density matrix renormalization group (DMRG) algorithm,
developed for the ground-state calculation of 1D spin chains.
For a recent review on matrix product states and tensor
product approximations in quantum physics, see Ref. 28 and
references therein. It should also be noted that tensor-trains
are special cases of hierarchical tensor representations as
introduced by Ref. 29, also called tree tensor networks.28

Please see Ref. 30 for a general overview of these concepts.
A hierarchical tensor representation requires the choice of a
dimension tree. One of the simplest and most straightforward
choices is a linear and unbalanced tree, which gives rise to
a tensor-train. In this work, we will stick to the TT-format,
mainly because of its conceptual simplicity and on the basis
of tensor-trains and ALS having provided promising results
for model systems.31

The main contribution of this paper is to demonstrate the
usefulness of the variational tensor approach for the analysis
of data generated by MD simulations. To this end, after briefly
reviewing the spectral theory of transfer operators and the
variational approach in Sections II and III, we present some
essential theory of tensor-trains in Section IV A, in a format
which is suitable to our problem. In contrast to most of the
previous applications of tensor product formats, the dynamical
operator in our setting is only sampled by the simulation data,
and no explicit low-rank representation of the operator is
available. In Section IV B, we present a modification of
the ALS which is suitable for our problem setting. The
method is intuitive and appears to be useful in practical
cases. We conclude by presenting the successful application
of the method to MD simulations of two benchmark systems,
deca-alanine (Ala10) and bovine pancreatic trypsin inhibitor
(BPTI), for which reference solutions using Markov models
are known. We also suggest a postprocessing method that
allows to identify a reduced subset of input coordinates which
is a representative for the slow dynamics. Its usefulness is
confirmed by the applications.

II. THEORY

We first outline the basic assumptions made for our
MD implementation, following Ref. 6. The MD simulation
samples from a time- and space-continuous ergodic Markov
process in a state space ⌦. These dynamics have a unique
stationary distribution ⇡, given by the Boltzmann distribution,

⇡(x) / exp (��V (x)) . (3)

This means that independent of the starting point, every MD
simulation that is su�ciently long will sample from this sta-
tionary distribution. Here, � = (k

B

T)�1 is the inverse temper-
ature, k

B

is the Boltzmann constant, and T is the temperature.
Another crucial ingredient for the system’s description is

the transition density function p(x, y; ⌧), which describes the
conditional probability of the system travelling from x to y
over a finite time step ⌧ > 0, also called the lag time. Although
the transition density is not known to us, we can assume that
it satisfies

⇡(x)p(x, y; ⌧) = ⇡(y)p(y, x; ⌧) 8x, y 2 ⌦, (4)

which is the “detailed balance” condition. Equation (4) is
physically motivated: It prohibits the existence of a preferred
direction in the system, which could be used to produce
work. Of course, it must be enforced by the molecular
dynamics integrator in order to hold in the simulation. Using
the transfer density, we can understand how ensembles of
trajectories evolve in time: If an ensemble of trajectories is
started according to a distribution p0 at time t = 0, then the
corresponding distribution p⌧ at time ⌧ is given by

p⌧(y) = P(⌧)p0(y) (5)

=

⌅

⌦

p(x, y; ⌧)p0(x)dx. (6)

This defines a linear integral operator, the propagator P(⌧).
Let us summarize the main properties of the propagator, see
again Ref. 6 for details. If we introduce the weighted scalar
product

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  84.187.186.229 On: Tue, 02 Feb
2016 17:35:40



054105-3 Nüske et al. J. Chem. Phys. 144, 054105 (2016)

FIG. 1. Conformation dynamics of the alanine dipeptide. In panel (a), we show the energy of the system as a function of the two dihedral angles � and  (not
to be confused with the eigenfunctions) in units of kJ/mol. There are three minima of the energy landscape (blue color) in the upper left, central left, and central
right region, where the system remains for most of the time. The two slow transitions are indicated by black arrows: the slowest is from the left to the right part
of the plane, while the second slowest transition occurs between the upper left and central left minimum. The corresponding relaxation time scales t2, t3 in units
of ps are printed next to the arrows. These two transitions are encoded in the sign structure of the second and third propagator eigenfunctions �2, �3, shown in
panels (b) and (c). It can be seen that �2 changes sign (red: positive, blue: negative) in the �-direction, i.e., the slowest transition with time scale t2 is associated
with a switch of the �-angle. The intensities are not equal on the left and on the right as the population of the two left minima is much higher compared to the
right. In the same way, the second slowest transition can be recognized from the sign structure of �3. This figure has been adapted with permission from Figure 4
of Nüske et al., J. Chem. Theory Comput. 10, 1739–1752 (2014). Copyright 2014 American Chemical Society.

hu, vi⇡�1 =

⌅

⌦

u(x) v(x) ⇡�1(x) dx, (7)

the propagator is bounded and self-adjoint (due to Eq. (4))
on the space L

2
⇡�1 of functions u that satisfy hu,ui⇡�1 < 1. It

can be shown that its largest eigenvalue is �1 = 1, whereas all
remaining eigenvalues are strictly smaller than one in absolute
value. Moreover, there is a number M of dominant positive
eigenvalues,

1 = �1 > �2 � · · · � �M

> 0. (8)

The remaining spectrum is contained in an interval [�R, R],
with R < �

M

. The eigenfunction corresponding to the largest
eigenvalue �1 = 1 is the stationary density ⇡.

The dominant eigenvalues �
m

and corresponding
eigenfunctions �

m

are the key to understand the complex
dynamics of the molecule. All eigenvalues except the first
decay exponentially with the lag time ⌧, i.e.,

�
m

(⌧) = e

�m⌧, m = 2, . . . ,M, (9)

with some relaxation rates 
m

> 0. Using the eigenfunctions
and eigenvalues, the action of the propagator on a probability
density p0 can be written as

P(⌧)p0 =

MX

m=1

e

�m⌧h�
m

, p0i⇡�1 �
m

+ Pfast p0. (10)

In most systems that we are interested in, the contribution
of Pfast vanishes quickly with the lag time. This implies that
for large enough ⌧, only a finite number M of the terms in
expansion (10) are still present, and the operator’s action can
be understood in terms of only finitely many processes

P(⌧)p0 ⇡
MX

m=1

e

�m⌧h�
m

, p0i⇡�1 �
m

. (11)

Each of the dominant eigenfunctions �2, . . . ,�m typically
carries the same sign on some specific regions of the state
space, but changes its sign between those regions. In this way,
the function encodes parts of the state space where the system

generally remains for a long time, while it rarely transitions
between them.2 This concept is known as metastability and
is a typical feature of biomolecules, where the metastable
regions are frequently associated with biological function
of the molecule, e.g., the ability/inability to bind to a
binding partner. Thus, each term in Eq. (11) corresponds
to a relaxation process that transports probability between the
metastable regions in order to equilibrate the system towards
the stationary distribution. The relaxation time of each process
is called the implied time scale and can be computed from the
dominant eigenvalues,

t

m

=
1

m

= � ⌧

log(�
m

(⌧)) . (12)

An illustration of this concept is shown in Figure 1 for a very
small toy system, the alanine dipeptide (Ac-Ala-NHMe). This
molecule consists of a single amino acid, alanine, capped by
two protection groups mimicking the behaviour of the amino
acid in a chain, like in a protein. It has been used as a test case
for many studies in recent years, e.g., Ref. 32, because it is
easy to produce su�cient simulation data and consequently,
its slow dynamics are very well understood.

Given this theoretical assessment, we now describe how
to practically approximate the eigenvalues and eigenfunctions.

III. DISCRETIZATION

A. Method of linear variation

In order to perform the approximation of eigenfunctions
in practice, we consider a di↵erent operator, the transfer
operator

T (⌧)u(y) = 1
⇡(y)

⌅

⌦

p(x, y; ⌧) ⇡(x) u(x) dx. (13)

The transfer operator is equivalent to the propagator in the
sense that it possesses the same eigenvalues �

m

, and its
corresponding eigenfunctions  

m

can be computed from the
propagator eigenfunctions �

m

via
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m

(x) = ⇡�1(x)�
m

(x). (14)

In particular, the sign structure of the  
m

is identical to
that of the �

m

. The transfer operator eigenfunctions  
m

are
orthonormal with respect to the scalar product

hu, vi⇡ =
⌅

⌦

u(x) v(x) ⇡(x) dx, (15)

and the operator is self-adjoint with respect to this inner
product. We have the traditional variational formulation33

MX

m=1

�
m

= sup
u1, ...,uM

MX

m=1

hT (⌧)u
m

,u
m

i⇡, (16)

hu
m

,u
m

0i⇡ = �m,m0. (17)

The sum of the first M exact eigenvalues maximizes the
partial trace

P
M

m=1hT (⌧)u
m

,u
m

i⇡, where the u

m

are a set of
M orthonormal functions. Equality is attained exactly for
the true eigenfunctions  1, . . . , M

. Our goal is to obtain an
approximation of the true eigenfunctions from a finite space
of trial functions �1, . . . , �N

. Therefore, one can restrict the
above problem to the space spanned by the functions �

i

.
It is also a well-known result34 that the right-hand side of
Eq. (16) is then maximized, subjected to constraint (17), by
the functions

 ̂
m

=

NX

i=1

V

im

�
i

. (18)

The columns of the matrix V correspond to the first M

eigenvectors of the generalized eigenvalue problem

C

⌧
V(:,m) = �̂

m

C

0
V(:,m), m = 1, . . . ,M, (19)

c

⌧
i j

= hT (⌧)�
i

, �
j

i⇡, (20)

c

0
i j

= h�
i

, �
j

i⇡. (21)

The eigenvalues �̂
m

can be used as estimates of the true
eigenvalues �

m

, and the functions  ̂
m

serve as approximations
of the true eigenfunctions. We have that �̂

m

= hT (⌧) ̂
m

,  ̂
m

i⇡,
and it follows from Eq. (16) that

MX

m=1

�̂
m


MX

m=1

�
m

. (22)

Variational principle Eq. (22) also holds for the individual
eigenvalues �̂

m

, see, e.g., Ref. 21

�̂
m

< �
m

, if  ̂
m

,  
m

, (23)

�̂
m

= �
m

, if  ̂
m

=  
m

m = 1, . . . ,M. (24)

The matrix entries in Eqs. (20) and (21) are not exactly
computable, because the transfer density defining T (⌧) is not
known in an analytically practical form, and the integration
spaces are very high-dimensional. An exception are models
that directly parametrize the transfer density in a way that
allows us to evaluate Eqs. (20) and (21), see, e.g., Ref. 35.

However, as pointed out in Refs. 21 and 22, we can
still estimate the matrices C

0 and C

⌧ as correlation matrices
between basis functions, as their entries are spatial expectation
values. From a su�ciently long realization of the process, they
can be estimated by time averages as follows:

c

⌧
i j

⇡ 1
T � ⌧

T�⌧X

t=1

�
i

(x
t

)�
j

(x
t+⌧), (25)

c

0
i j

⇡ 1
T

TX

t=1

�
i

(x
t

)�
j

(x
t

), (26)

where T is the total length of the realization. This is not
true for the corresponding matrix approximation of the
propagator P(⌧), as the matrix elements cannot be interpreted
as correlations. It is worth noting that Markov state models
are a special case of the above formulation for the choice of
characteristic functions of sets as basis functions.21,22 MSMs
have the additional benefit that the estimators for Eqs. (25)
and (26) are conditional estimators, and this allows us to
use short trajectories that are not in global equilibrium.6 This
important property can also be achieved for other basis sets
that are probability densities, such as Gaussian distributions.35

For arbitrary basis functions, estimator Eqs. (25) and (26) are
incorrect if the data are not in global equilibrium. It is an open
research question if these estimates can be used nevertheless.

B. Coordinates and basis sets

In order to apply the above approach, it is still necessary to
identify the set of functions or a sequence of sets of functions
to be used. This problem has in fact three aspects, as we
need to select the coordinates that serve as domains of these
functions, the type of functions, and the way that functions
depending on di↵erent coordinates are being combined.

Finding informative input coordinates is an ongoing
research problem, see, e.g., Refs. 8, 36, and 37. However,
this task is not the objective of the present study. In addition
to that, we must decide what type of basis functions we
use on the set of input coordinates and how to choose
their parameters. In Ref. 22, we have used a set of one-
coordinate basis functions defined on the individual dihedral
angles (but no tensor products of them) for small peptides.
The one-coordinate functions themselves were chosen as
Gaussian functions, their parameters were selected for each
dihedral angle separately. Let us emphasize that the choice
of Gaussian basis functions was just for the sake of illustration
— other basis sets might have worked equally well. In fact, it
would be desirable to use basis functions which carry some
chemical or physical information. They might, for instance,
encode the torsional rotamer or whether a hydrogen bond is
formed or dissociated. This is another open line of research,
for some first results in this direction, see Ref. 23.

In this work, we are focusing on the coupling problem: In
order to correctly model the dynamics of large systems where
coordinates are coupled, we should use basis functions that
are products of one-coordinate basis functions. Assuming that
there are d input coordinates labeled x1, x2, . . . , xd

, and for
each coordinate x

p

, we have n one-coordinate basis functions
f

p

ip
(x

p

), where p = 1, . . . ,d and i

p

= 1, . . . ,n (the theory can
trivially deal with p-dependent n, but for simplicity of notation,
we assume a constant n here). For practical reasons, we
assume that the first one-coordinate basis function is the
constant, f

p

1 (xp

) ⌘ 1, although this is not needed for most of
the theory. Then, we try to approximate each eigenfunction
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FIG. 2. Illustration of low-dimensional subspaces carrying the relevant information for the dimer Ac-Val-Ala-NHMe. Panel (a) shows the two slowest implied
time scales t2, t3, in red and blue, estimated by two di↵erent models: A reference MSM (dashed line, 9 states) and full product expansion Eq. (27) (solid line,
n = 5, 625 basis functions). Both models perform comparably well. In panel (b), we present a cumulative plot of the squared expansion coe�cients of the second
eigenfunction  ̂2, as estimated by the full product approach, expressed in an orthonormal basis with respect to weighted inner product Eq. (15). It takes about 90
basis functions to reproduce 95% of the norm, as indicated by the black vertical line.

 
m

, m = 1,2, . . . by a function  ̂
m

that is a linear combination
of all possible products of the f

p

ip
,

 ̂
m

(x1, . . . , xd

) =
X

i1, ..., id

U

m

(i1, . . . , id) f

1
i1
(x1) . . . f

d

id
(x

d

).

(27)

The basis functions for the variational approach are the
products f

1
i1
(x1) . . . f

d

id
(x

d

), and U

m

is a d-dimensional array
(tensor) containing the expansion coe�cients of all these
products. As we can immediately see, the number of basis
functions used in this expansion is n

d. This number becomes
impossible to cope with even for small n and moderate d, not to
mention the evaluation of the correlation matrices in Eqs. (25)
and (26) using long trajectories. However, our experience and
the high degree of redundancy contained in intramolecular
coordinates suggest that a small selection of these product
functions should be su�cient to produce essentially the same
results. Let us illustrate this by another example, a capped
dimer of the two amino acids, valine and alanine (Ac-Val-
Ala-NHMe). Here, we have two pairs of dihedral angles,
the dimension thus becomes d = 4. Since the coordinates
are periodic angles, we used the real Fourier basis of sine
and cosine functions. Setting n = 5, the full product basis is
comprised of 54 = 625 functions. In Figure 2(a), we check the
accuracy of the model by comparing the two slowest implied
time scales t2, t3 to those obtained from a reference Markov
model. This model is obtained by discretizing the dihedral
plane of every residue into three states which were chosen

according to known dynamics of the monomers, resulting in
a total of 32 = 9 states, see Ref. 23. Both models perform
comparably well. Clearly, the Markov model is much more
e�cient, but its construction requires a priori knowledge
of the peptide dynamics that is not easily transferred to
larger systems. Figure 2(b) shows the cumulative sum of the
squared coe�cients of the estimated second eigenfunction  ̂2
from the product basis. The coe�cients were computed after
transforming the product basis into an orthonormal basis with
respect to ⇡-weighted inner product Eq. (15). We observe that
only a small part of the 625 basis functions contribute with
a high coe�cient compared to all others. We conclude that
it should be possible to find a much smaller subspace of the
full product space and end up with essentially the same result.
The e�cient search for this subspace is the topic of Sec. IV.

IV. TENSOR PRODUCT APPROXIMATIONS

A. Tensor-train-format

The problem of finding a computationally feasible
approximation to a high-dimensional representation like Eq.
(27) occurs across many fields, and significant progress has
been made in recent years. Out of all the di↵erent approaches
that have been suggested, we choose to present and use the
TT-format, which has been introduced in Refs. 24 and 25.

A function in TT-format still possesses a high-
dimensional representation like Eq. (27), but the coe�cient
array U

m

has a special structure as in Eq. (29),25

 ̂
m

=
X

i1, ..., id

U

m

(i1, . . . , id) f

1
i1
(x1) . . . f

d

id
(x

d

) (28)

=
X

i1, ..., id

2666664
r1X

k1=1

. . .

rd�1X

kd�1=1

U1(i1, k1)U2(k1, i2, k2) . . .Ud

(k
d�1, id)

3777775
f

1
i1
(x1) . . . f

d

id
(x

d

). (29)

Here, U1 2 Rn⇥r1, U

d

2 Rrd�1⇥n are matrices and U

p

2
Rrp�1⇥n⇥rp, p = 2, . . . ,d � 1, are three-dimensional arrays.
Consequently, for every choice of i1, . . . , id, the arrays U1 and

U

d

turn into vectors U1(i1), U

d

(i
d

), whereas all other arrays
U2, . . . ,Ud�1 become matrices U2(i2), . . . ,Ud�1(id�1), and the
coe�cient U

m

(i1, . . . , id) can be computed by a repeated
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matrix-vector multiplication,
U

m

(i1, . . . , id) =U1(i1)U2(i2) . . .Ud

(i
d

). (30)
Thus, only the arrays U1, . . . ,Ud

need to be stored, and the
number of parameters in these arrays is linear in the dimension
d, see Ref. 25.

The intuition behind this representation is that only
limited information is passed on from one variable to the
next in the sequence x1, . . . , xd

. To see this, consider the case
d = 4, and re-order Eq. (29) as follows:

 ̂
m

=
X

k1, i2,k2

U2(k1

, i2,k2

) f

2
i2
(x2) (31)

·
2666664
X

i1

U1(i1,k1

) f

1
i1
(x1)

3777775
·
2666664
X

i3, i4

X

k3

U3(k2

, i3, k3)U4(k3, i4) f

3
i3
(x3) · f

4
i4
(x4)

3777775
=
X

k1, i2,k2

U2(k1

, i2,k2

) f

2
i2
(x2) · g2

k

1

(x1) · h2
k

2

(x3, x4). (32)

The expressions shown in brackets in Eq. (31) contain exactly
one free index k1 and k2, respectively, indicated by the bold-
face letter. Thus, it makes sense to define functions g2

k1
, h

2
k2

by these expressions, which leads us to the representation
in Eq. (32). The meaning of Eq. (32) is that the function
 ̂
m

is represented by a linear combination of basis functions
which can be separated into three parts: each basis function
is a product of a function f

2
i2

depending on the variable
x2, a function g2

k1
which depends on all variables up to x2,

and another function h

2
k2

which depends on all unknowns
following x2. Thus, the information about all coordinates
up to x2 is encoded into a limited number of functions,
and so is the information about all coordinates following
x2. The representation in Eq. (31) corresponds to panel
B in Fig. 3. However, this is not the only way to re-
order Eq. (29), as there are d equivalent ways to do so.
All of these di↵erent re-orderings for the case d = 4 are
displayed in the remaining parts of Fig. 3. In the general
case, the re-ordering centered around coordinate x

p

is given
by

 ̂
m

=
X

kp�1, ip,kp

U

p

(k
p�1

, i
p,kp

) f

p

ip
(x

p

) (33)

·
2666664
X

i1, ..., ip�1

X

k1, ...,kp�2

U1(i1, k1) . . .Up�1(kp�2, ip�1,kp�1

) f

1
i1
(x1) . . . f

p�1
ip�1

(x
p�1)

3777775
·
2666664
X

ip+1, ..., id

X

kp+1, ...,kd�1

U

p+1(kp

, i
p+1, kp+1) . . .Ud

(k
d�1, id) f

p+1
ip+1

(x
p+1) . . . f

d

id
(x

d

)
3777775

=
X

kp�1, ip,kp

U

p

(k
p�1

, i
p,kp

) f

p

ip
(x

p

) · gp

k

p�1

(x1, . . . , xp�1) · hp

k

p

(x
p+1, . . . , xd

). (34)

The underlying principle is the same: The information about
the variables x1, . . . , xp�1 is encoded into r

p�1 functions
gp

kp�1
, which we call the left interfaces at position p.

Also, the information about the variables x

p+1, . . . , xd

is
contained in r

p

functions h

p

kp
, called right interfaces at p. The

numbers r1, . . . ,rd�1 are called the ranks of the tensor-train.
Furthermore, we note for later use that the interfaces satisfy
the recursive relations

gp+1
kp
=
X

kp�1, ip

U

p

(k
p�1, ip, kp

)gp

kp�1
f

p

ip
, (35)

h

p�1
kp�1
=
X

ip,kp

U

p

(k
p�1, ip, kp

) f

p

ip
h

p

kp
. (36)

B. Alternating linear scheme

In order to make use of the tensor-train-format in practice,
we need a method to determine the optimal components
U

p

and a way to parametrize multiple eigenfunctions  ̂
m

.

To this end, we build on two major developments in the
field of tensor-trains: first, the ALS, which is an iterative
learning algorithm that arises naturally from the TT-format,
see Ref. 31. Second, the block-TT-format from Refs. 38
and 39, which is a modification of tensor-trains allowing
for the simultaneous approximation of multiple functions
using almost the same number of parameters. These concepts
have led us to the algorithm outlined below. We present our
optimization procedure as we have used it in the applications
and comment on its relation to the standard methods in the
literature in Appendix B.

The idea of alternating optimization is that in each
iteration step, we attempt to update one component U

p

, while
keeping all others fixed. Starting from some initial guess for
all U

p

, the method will first update U1 while U2, . . . ,Ud

are
fixed, then it will update U2 with U1,U3, . . . ,Ud

fixed, and
so on, until U

d

is optimized. After completing this so-called
forward sweep, it will proceed backwards along the sequence
of variables, which is called the backward sweep. This can be
repeated until some convergence criterion is satisfied.
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FIG. 3. Illustration of a function  ̂m of d = 4 variables in tensor-train-format. The solid dots at the bottom represent the sets of one-coordinate basis functions
f

p
ip

. Dots with the tensor product symbol ⌦ contain all products of the incoming bases, indicated by the arrows. The arrays denoted by Up[rp] select rp linear
combinations of the products to form a new basis. We see that there are d equivalent representations of the function as a linear combination of a reduced and
structured basis. If we center the representation around coordinate xp, then the arrays U1, . . .,Up�1 encode the information about the variables x1, . . ., xp�1
into rp�1 functions. This process is shown in the green part of each panel. The arrays Up+1, . . .,Ud encode the information about the variables xp+1, . . ., xd
into rp functions, which is shown in the red part of each panel. Both basis sets are combined with the one-coordinate functions f

p
ip

(shown in blue), and a linear
combination of these products is selected by Up, which is the final representation of  ̂m.

As outlined in Sec. IV A, the component U

p

can be read
in two di↵erent ways: Either it is meant to optimally encode
the information about all coordinates up to position p into
r

p

left interfaces gp+1
kp

or to encode the information about
all coordinates x

p

, . . . , x
d

into r

p�1 right interfaces h

p�1
kp�1

.
We will focus on the first reading during the forward sweep
of the optimization and on the second during the backward
sweep. Consider the forward sweep case and assume that
we attempt to optimize component U

p

while all others are
fixed. Following Sec. III A and recalling recursive definition
Eq. (35), the optimal left interfaces gp+1

kp
would be the linear

combinations

gp+1
kp

(U
p

) =
X

kp�1, ip

U

p

(k
p�1, ip, kp

)gp

kp�1
f

p

ip
(37)

that maximize the eigenvalue sum

L

p

(U
p

) =
MX

m=1

�̂
m

(U
p

) (38)

resulting from generalized eigenvalue problem Eq. (19) for
the basis

gp+1
kp

(U
p

) f

p+1
ip+1

f

p+2
ip+2

. . . f

d

id
, (39)

as it combines limited information about the first p coordinates
with all possible basis functions of the remaining ones. As
this problem is not tractable, we use the information we have
already computed and determine the interfaces gp+1

kp
which

maximize sum Eq. (38) for the reduced basis

gp+1
kp

(U
p

) f

p+1
ip+1

h

p+1
kp+1

, (40)

see Fig. 4 for an illustration. This trick is inspired by the
MALS31 and the original DMRG algorithm.

Let us touch on the most important points of this
optimization problem. First, we can set up a numerical

FIG. 4. Schematic representation of the optimization problem for the compo-
nentUp. This array selects rp linear combinations of the products g p

kp�1
· f pip

(see Eq. (35)) to form a new basis g p+1
kp

(Up) in an optimal way. Optimality is

defined as follows: We combine the basis g p+1
kp

(Up) with the one-coordinate

functions f

p+1
ip+1

and with the right interfaces h

p+1
kp+1

at position p+1, to form
basis Eq. (40). For this basis, we solve generalized eigenvalue problem Eq.
(19) to obtain dominant eigenvalues �̂m(Up). Optimality of theUp is defined
by maximizing sum Eq. (38) of the �̂m(Up).
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ALGORITHM 1. Summary of optimization algorithm.

1: q = 0
2: repeat

3: q+= 1
4: for p = 1, . . .,d�2 do

5: Solve Eq. (19) for the four-fold basis Eq. (41), obtain eigenvalues
�̂p,p+1
m

6: Update reference eigenvalue sum Lref

7: for rp = 1, . . .do

8: Optimize coe�cients Up(kp�1, ip, kp) s.t. Lp(Up) defined
by Eq. (38) is maximal

9: if Lp(Up) � ✏rank ·Lref then

10: Update Up, g
p+1
kp

, rp

11: break

12: end if

13: end for

14: end for

15: Repeat this in backward direction for p = d, . . .,3
16: until |Lq

p(Up)�Lq�1
p (Up)| < "iter 8p

optimization method for Eq. (38) if r

p

is fixed, please see
Appendix C for an explanation. Therefore, we sequentially
determine the optimal component U

p

for increasing values of
the rank r

p

and accept U

p

as the solution if the eigenvalue
sum L

p

(U
p

) matches a reference value Lref up to a tolerance
✏ rank. If accepted, U

p

becomes the new pth component, the
functions gp+1

kp
(U

p

) become the new left interfaces at position
p + 1, and r

p

is the new rank. Otherwise, r

p

is increased by
one and the above optimization is repeated. The reference Lref
is obtained as follows: As a first step, we always evaluate a
four-fold product basis defined by the functions

gp

kp�1
f

p

ip
f

p+1
ip+1

h

p+1
kp+1

(41)

and solve generalized eigenvalue problem Eq. (19) for this
basis. We compute the dominant eigenvalue sum resulting
from this problem,

L

p

=

MX

m=1

�̂p,p+1
m

. (42)

Variational principle Eq. (16) implies that for any U

p

, the
eigenvalue sum L

p

(U
p

) is bounded from above by L

p

. Thus,
we keep a track of the maximal value obtained for L

p

during
the entire optimization process and store this maximum as
the reference Lref. Second, we enforce the first interface
function gp+1

1 to be the constant function. This constraint
ensures that the largest eigenvalue �̂1(Up

) is always equal to
one, which turned out to be an important stabilization of the
method. Third, the full optimization is considered converged
if all of the objective functions L

p

(U
p

) from two subsequent
forward and backward sweeps do not di↵er by more than a
tolerance ✏ iter. A summary of the complete method is given in
Algorithm 1.

V. RESULTS

In this section, we present two examples for the
approximation of dominant eigenfunctions of molecular
systems in the tensor-train-format. The first is the ten residue

peptide Ala10, the second is the 58 residue protein BPTI.
Equilibrium trajectories that are orders of magnitude longer
than the slowest relaxation time scales are available for both
of these systems.

The ALS-optimization is initialized as being completely
uninformed, we set all ranks r

p

= 1 and prepare the
components U

p

to parametrize just the constant function.
We choose the rank acceptance threshold as ✏ rank = 0.995 and
the overall stopping criterion as ✏ iter = 0.01. Both of these
choices are based on our experience with the method so far,
and a more systematic or automatic choice of parameters will
be a topic of further research. The setting for ✏ rank ensures
that no important information is lost along the course of
the iteration. The setting for ✏ iter reflects the general level
of accuracy that we can achieve for the eigenvalues obtained
from the analysis of MD data, based on the general experience
we have.

Our analysis of the examples consists of four steps. First,
we monitor the slowest implied time scale t2 over the course of
the optimization and compare it to reference values. Second,
we analyse the structural transition encoded in the slowest
eigenfunction  ̂2. To this end, we evaluate the eigenfunction
at all frames and histogram the resulting time series. Following
the theory in Sec. II, we expect to find peaks of the population
corresponding to the most negative and the most positive
values attained by the eigenfunction. As these peaks should
correspond to metastable states, we extract representative
structures for each of them in order to determine the structural
transition described by the eigenfunction. Third, we attempt to
identify coordinates which are relevant for the slow dynamics.
To this end, we solve the following problem after every
iteration step (we illustrate the problem for the forward sweep
again, it works analogously for the backward sweep): after
the new interface functions gp+1

kp
have been determined, we

compute the best approximation to these functions in the least
squares sense from the previous interfaces gp

kp�1
only, leaving

out the one-coordinate basis for coordinate p. We record the
average approximation error E(p) for all of the new interface
functions as a measure for the information contained in the
basis at position p, see Appendix D for the details. Once the
main iteration is completed, we re-run the ALS-iteration using
only those coordinates p which satisfy that E(p) is greater
than a certain cuto↵ and repeat this for various choices of the
cuto↵. By this procedure, we attempt to find a reduced set of
coordinates which allows us to build an equally good model
as the full one.

A. Deca-alanine

Ala10 simply consists of ten residues of alanine in a
chain. We use six equilibrium simulations of 500 ns each,
accumulating to 3 µs total simulation time. The simulations
were produced at temperature 300 K using the GROMACS
4.5.5 simulation package, the Amber03 force field, and the
TIP3P water model. See Appendix A for details.

The input coordinates used for this system are d = 16
backbone dihedral angles from the eight internal residues of
the chain. We left out the two outermost residues as the chain
was not capped in the simulation, increasing the flexibility of
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the outer residues. Our set of one-coordinate basis functions
used for each dihedral consisted of the first n = 7 real Fourier
(sine and cosine) waves. The lag time used for our analysis was
⌧ = 2 ns. We can compare our results to a reference Markov
state model, see, e.g., Ref. 22. This model was constructed by
partitioning the Ramachandran plane of each pair of backbone
dihedrals into three boxes corresponding to the minima of the
single amino acid dynamics, see Fig. 1(a). The Markov states
were then defined by all combinations of these boxes, the total
number of states is thus 83 = 6561. It is found that the slowest
dynamical process in the system is the formation of a helix
and occurs at an implied time scale t2 ⇡ 7.5-8 ns.

Fig. 5(a) shows that the implied time scale t2 as estimated
by our model reaches the correct regime over the first forward
sweep, then corrects slightly along the backward sweep, and
remains more or less constant afterwards. Panel (b) displays
the relative histogram of the second estimated eigenfunction
 ̂2 over all data points of the MD trajectory. We can identify a
number of peaks of the population, of which we select the two
outermost ones (around �1.3 ± 0.3 and 1.6 ± 0.2) to analyse
the slow transition. An overlay of 200 random structures
from each of these peaks confirms that the eigenfunction  ̂2
encodes the transition from an extended structure to a helix, as
expected. The final values of the least squares approximation
error E(p) (thus resulting from the final backward sweep)

are shown in panel (c). It can be observed that five interior
 -angles from the chain display the largest least squares
error, indicating that these coordinates are important. This is
consistent with the slowest process being the formation of
a helix and is strengthened further by the analysis shown in
panel (d). Here, we find that these five coordinates allow us to
build a model which equals the quality of the full model.

B. BPTI

We also study the 1.05 ms folded-state simulation
of the 58-residue protein BPTI produced on the Anton
supercomputer and provided by D. E. Shaw research.40

This large dataset has become a benchmark system used
in numerous studies in recent years. The slowest structural
transition included in the C↵ dynamics has been identified
by other kinetic models to be on a time scale t2 ⇡ 40 µs, see
Refs. 8 and 41 for details.

The coordinates used in order to apply our method are
the distances between all C↵ atoms in the system which are
at least three residues apart. For each distance, we construct
a minimal basis set consisting of only n = 2 functions: The
first is the constant, while the second is a smooth switching
function indicating whether a contact between two C↵ atoms
has formed or not

FIG. 5. Results for deca-alanine peptide. (a): Second implied time scale t2 in ns along the three forward and backward sweeps of the ALS-iteration. (b): Relative
histogram of the simulation data along the  ̂2-coordinate. We identify two peaks of the population corresponding to the most negative (around �1.3±0.3) and
the most positive values (1.6±0.2) of the coordinate. Extracting 200 random frames from each of these peaks and superimposing their molecular structures show
that the  ̂2-coordinate encodes the transition from an elongated conformation to the helix. (c): Average approximation error E(p) for the newly determined
interface functions at position p, normalized by the maximum error over all coordinates p. (d): Second implied time scale t2 estimated by ALS using only
the coordinates satisfying that E(p) is greater than the cuto↵ given on the horizontal axis. The small numbers next to the data points indicate the number of
coordinates used in each model.
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FIG. 6. Results for BPTI. (a): Second implied time scale t2 in µs along the three forward and backward sweeps of the ALS-iteration. (b): Relative histogram of
the simulation data along the  ̂2-coordinate. We identify two peaks of the population. Extracting 200 random frames from each of these peaks and superimposing
their molecular structures shows that the  ̂2-coordinate encodes the structural transition observed previously in the literature. (c): Average approximation error
E(p) for the newly determined interface functions at position p, normalized by the maximum error over all coordinates p. (d): Second implied time scale t2
estimated by ALS using only the coordinates satisfying that E(p) is greater than the cuto↵ given on the horizontal axis. The small numbers next to the data
points indicate the number of coordinates used in each model.

f

p

2 (xp

) =
1 �

�
x

p

/r0
�64

1 �
�
x

p

/r0
�96 , (43)

where x

p

is the C↵ distance under consideration and
r0 = 0.7 nm is an empirically obtained cuto↵ distance. The
function is mostly equal to one for x

p

< r0, indicating that a
contact between the two atoms has formed, while it is mostly
zero for x

p

> r0, thus indicating that the contact is broken.
The function smoothly transitions between one and zero in a
small neighborhood of r0. With this basis, it is easy to reduce
the number of input coordinates by checking if a contact has
at least once transitioned from the formed to the broken state
or vice versa and only using those contacts while leaving out
all others. For the given dataset, this preprocessing reduces
the number of contacts from initially around 1500 to d = 258.
Still, this system is a lot larger than the previous one. We
conduct our analysis at lag time ⌧ = 5 µs.

Figure 6(a) shows that again, the second implied time
scale t2 rises to the appropriate regime over the course of the
first forward sweep, improves further during the first backward
sweep, and changes only slightly afterwards. The histogram of
the data over the estimated second eigenfunction  ̂2 displays
two clearly distinguishable peaks at its extremal values (around
�0.2 ± 0.5 and 6.5 ± 1.0). A set of 200 molecular structures
extracted from these peaks confirm that  ̂2 encodes the struc-
tural transition as it was determined previously, namely, a re-
folding of the loop on the N-terminal side of the backbone.8,41

The results of the least squares approximations are not as clear
as in the previous example. It is apparent from Fig. 6(c) that
more than 100 of the coordinates at the end of the sequence
are identified as completely unimportant, with E(p) ⇡ 0. This
finding is in agreement with the fact that the part of the chain
near the C-terminus is not involved in the slow transition. For
the remaining 140 coordinates, E(p) varies between 100 and
10�6, but there is no obvious gap or cuto↵ which separates the
important from the unimportant coordinates. However, such a
cuto↵ can be determined by building various reduced models.
We can conclude from Fig. 6(d) that choosing the cuto↵ as
E(p) � 10�3, we can determine a set of 58 coordinates which
are su�cient to build a reduced model of the same quality as
the full model, while using an even higher cuto↵ entails loss
of information.

VI. CONCLUSIONS

We have proposed a new approach to approximate
eigenvalues and eigenfunctions of molecular dynamics
operators by products of one-coordinate basis functions.
The one-coordinate basis functions are used to indicate local
changes in internal coordinates of the molecular system, such
as rotamer changes in the dihedrals or formation/dissociation
of contacts in the distances. Combining these one-coordinate
functions by products allows us to encode complex couplings
of coordinates (e.g., concerted changes of torsions or
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simultaneous dissociation of multiple contacts). In order to
avoid a combinatorial explosion of the products, we select a
small subset of them using a sparse tensor product approach.
Specifically, the TT-format and the method of linear variation
are used in order to iteratively select a suitable subspace, from
which the eigenvalues and eigenfunctions are approximated.
We make use of the ALS as a learning algorithm, in a version
which we have adapted to the problem setting.

Our results suggest that the TT-approach is suitable
for selecting a sparse set of products of one-coordinate
basis functions in order to approximate the high-dimensional
eigenfunctions of molecular conformation spaces. As the
resulting eigenfunction approximations are directly related
to the molecular coordinates, they can be interpreted
via postprocessing methods and may serve as a way to
select the most relevant molecular features that are good
reaction coordinates. In the two examples presented, specific
coordinates could be recognized as relevant for the slow
kinetics or as irrelevant.

Although this research is still in its infancy, our work
suggests that approximating eigenfunctions by a sparse set
of products of one-coordinate basis functions may be a
promising direction to compute conformation dynamics of
macromolecules. Future work will have to address the question
of how stably this method can perform for significantly larger
systems. The success of our iterative scheme depends on the
ranks r

p

, as the computational e↵ort grows with increasing
ranks. It will be important to see how these ranks can be
controlled for large systems. Also, we expect the ordering
of input coordinates to play an important role in the future.
Apart from that, we were able to use equilibrium trajectories
in the examples presented so far. For large systems, it is
usually impossible to provide equilibrium data because of
the sampling problem. We will have to study the e↵ects of
non-equilibrium data on our current methods, and we will
need to develop a framework where statistical uncertainty and
discretization error can be balanced. However, we think that
the methods presented in this work can be a useful foundation
for the study of these problems.

ACKNOWLEDGMENTS

This work was funded by the Einstein foundation Berlin
through ECMath, by Deutsche Forschungsgemeinschaft

through SFB 1114, and by the European Commission
through ERC starting grant “pcCell.” We thank Benjamin
Trendelkamp-Schroer for helpful discussions and Cecilia
Clementi for suggesting the basis set used for BPTI.

APPENDIX A: SIMULATION SETUP OF DECA-ALANINE

We performed all-atom molecular dynamics simulations
of deca-alanine, which is protonated at the amino terminus and
deprotonated at the carboxy terminus, using the GROMACS
4.5.5 simulation package, the Amber03 force field,42 and the
TIP3P water model. A completely elongated conformation
was chosen as an initial structure.

The structure was solvated in a cubic box of volume
V = 232.6 nm3, with 7647 pre-equilibrated TIP3P water
molecules. First, an equilibration run of 500 ps in the NVT
ensemble with full position restraints, using the velocity-
rescale thermostat, was carried out. This was followed by
a 500 ps NPT equilibration run. The temperature was set to
T = 300 K. The equilibration run was followed by a 500 ns
production run, again at T = 300 K. Two temperature coupling
groups were used with a velocity-rescale thermostat and a
time constant of 0.01 ps. Periodic boundary conditions were
applied in the x, y , and z directions. For the long range
electrostatic interaction, PME was used with a PME-order of
4 and a Fourier grid spacing of 0.15 nm. Covalent bonds to
hydrogen bonds were constrained using the LINCS algorithm,
allowing for a 2 fs time step. The leap frog integrator was used.
Data were saved every 1 ps, resulting in 5 · 105 data frames.
Six independent simulations from the same equilibrated
configuration were carried out resulting in 3 µs total data.

APPENDIX B: RELATION TO THE BLOCK-TT-FORMAT

Our optimization method shown in Algorithm 1 is built on
the modification of the ALS (Ref. 31) for the block-TT-format,
see Refs. 38 and 39. The block-TT-format allows for the
simultaneous parametrization of a number M > 1 functions
using only a few additional parameters. A tensor is in block-p-
format if there is exactly one component U

p

which carries an
additional index m, enumerating the di↵erent functions, while
all remaining components retain their structure as before.
Eqs. (29) and (34) then turn into

 ̂
m

=
X

i1, ..., id

2666664
r1X

k1=1

. . .

rd�1X

kd�1=1

U1(i1, k1) . . .Up

(k
p�1, ip, kp

,m) . . .U
d

(k
d�1, id)

3777775
f

1
i1
(x1) . . . f

d

id
(x

d

), (B1)

 ̂
m

=
X

kp�1, ip,kp

U

p

(k
p�1, ip,kp

,m) f

p

ip
(x

p

) · gp

kp�1
(x1, . . . , xp�1) · hp

kp
(x

p+1, . . . , xd

), (B2)

where we have highlighted the additional index in bold-
face letters. The ALS-optimization of multiple eigenfunctions
proceeds as follows: suppose we are on the forward sweep, the
tensor is in block-p-format and we seek to update component
U

p

, while all others are fixed. We observe that we can solve

the eigenvalue problem Eq. (19) for the three-fold product
basis in Eq. (B2), and we can update every slice U

p

(:, :, :,m)
by the mth eigenvector thus obtained. In order to proceed to
the optimization of the next component U

p+1, however, the
index m needs to be moved into U

p+1 first. Otherwise, U

p
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would parametrize di↵erent left interfaces for every value of
m, which violates the idea of the TT-format. In the literature,
it is suggested to perform the index move as follows:

• Re-shape the component U

p

into a matrix in
Rrp�1·n⇥rp ·M and compute a low-rank decomposition,
e.g., by singular value decomposition (SVD) or QR-
decomposition,

U

p

(k
p�1ip, kp

m) =
r

0
pX

k

0
p=1

V

p

(k
p�1ip, k

0
p

)W
p

(k 0
p

, k
p

m).

(B3)

• Contract the arrays W

p

and U

p+1 by summing over k

p

,

Ũ

p+1(k 0
p

, i
p+1, kp+1,m)

=

rpX

kp=1

W

p

(k 0
p

, k
p

m)U
p+1(kp

, i
p+1, kp+1). (B4)

After this, the pth component can be updated by V

p

,
which carries no more than three indices, while the p + 1-st
component can be updated by Ũ

p+1, which now enumerates
the index m. Furthermore, the pth rank has changed to r

0
p

, thus
allowing for rank-adaptivity during the iteration. Also note
that decomposition Eq. (B3) needs to be truncated, otherwise
the ranks r

p

can easily blow up.
Initially, we attempted to apply ALS using the above

method, but the truncation step turned out to be problematic.
The main obstacle was that decompositions like SVD do
not respect the underlying structure of the problem, namely,
that the solutions  ̂

m

need to be orthogonal with respect
to weighted inner product Eq. (15). Even for large ranks
r

0
p

, yielding close approximations to the full matrix U

p

, the
resulting functions  ̂

m

often failed to fulfill the orthogonality
constraints. Consequently, we were facing either intolerably
large ranks or meaningless results.

Still, the optimization algorithm described in this
work produces a tensor in the block-TT-format. Recall
that the optimization of component U

p

provides a new
left interface gp+1

kp
(U

p

). The eigenvectors of generalized
eigenvalue problem Eq. (19) parametrize M eigenfunctions
in terms of reduced basis Eq. (40), yielding a component
U

p+1 2 Rrp⇥n⇥rp+1⇥M. Thus, the tensor is in block-p + 1-
format after the optimization. However, this component is
not used, as it is updated immediately afterwards by the next
optimization step.

APPENDIX C: OPTIMIZATION PROBLEM
FOR THE COMPONENTS UP

Here, we formulate the optimization problem which
needs to be solved for increasing ranks r

p

in every iteration
step of Algorithm 1. We seek to determine the optimal
component U

p

2 Rrp�1⇥n⇥rp, s.t. eigenvalue sum Eq. (38) for
reduced basis Eq. (40) is maximal. This is an unconstrained
optimization problem which can be solved numerically by a
conjugate gradient method if we can provide the derivatives
of the eigenvalues �̂

m

(U
p

) with respect to the entries of U

p

.
These derivatives can be obtained as follows: The eigenvalues
�̂
m

(U
p

) solve generalized eigenvalue problem Eq. (19) using
the reduced correlation matrices C

⌧(U
p

), C

0(U
p

) between
basis functions Eq. (40). These correlation matrices can be
computed from the larger correlation matrices C

⌧
p,p+1, C

0
p,p+1

of four-fold product basis Eq. (41),

C

⌧
p,p+1 = hT (⌧)gp�1

kp�1
f

p

ip
f

p+1
ip+1

h

p+1
kp+1

, gp�1
lp�1

f

p

jp
f

p+1
jp+1

h

p+1
lp+1

i⇡,
(C1)

C

0
p,p+1 = hgp�1

kp�1
f

p

ip
f

p+1
ip+1

h

p+1
kp+1

, gp�1
lp�1

f

p

jp
f

p+1
jp+1

h

p+1
lp+1

i⇡, (C2)

by the formulas

⇥
C
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p

)
⇤
kp, ip+1,kp+1
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X
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Using these formulas, we can di↵erentiate the matrix entries of C

⌧(U
p

) and C

0(U
p

) with respect to the variables U

p

,

@
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What remains is to compute derivatives of the eigenvalues
�̂
m

(U
p

) with respect to the matrix entries of C

⌧(U
p

), C

0(U
p

).
For isolated eigenvalues �̂

m

(U
p

) and positive definite C

0(U
p

),
matrix perturbation theory yields the results
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where v

m

is the mth eigenvector corresponding to �̂
m

(U
p

).
Combining Eqs. (C7) and (C8) with Eqs. (C5) and (C6), we
find the derivatives of �̂

m

(U
p

) with respect to the variables
U

p

. Eqs. (C7) and (C8) can be obtained from perturbation
theory. Consider an analytic perturbation of C

⌧ = C

⌧(U
p

) and
C

0 = C

0(U
p

),
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⌧ = C

⌧ + ✏C

⌧
1 + · · ·, (C9)

C̃
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0 + ✏C

0
1 + · · ·. (C10)

Then, the proof of Ref. 43 [Theorem 1] can be imitated for
the positive definite generalized eigenvalue problem to show
that also the eigenvalue �̃

m

of C̃

⌧, C̃

0 can be computed by a
series expansion in a small neighborhood of C

⌧, C

0,

�̃
m

= �̂
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(U
p
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+ · · ·. (C11)

Moreover, the proof of this theorem also provides an expres-
sion for the first order correction �̂1

m

. For the positive definite
generalized eigenvalue problem, the correction becomes
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Eqs. (C7) and (C8) now follow if we use the perturbations
C

⌧
1 = C

0
1 = E

i j, where E

i j is a matrix whose elements (i, j)
and ( j, i) are equal to one, while all others are zero. Note that
the factor 2 � �

i j

accounts for the symmetry of the matrices
C

⌧(U
p

), C

0(U
p

).

APPENDIX D: LEAST SQUARES APPROXIMATION
OF INTERFACES

In order to evaluate the contribution of the one-coordinate
basis f

p

ip
to the full solution, we suggest the following simple

method. As before, we explain the method in the context of
the forward iteration. The interface functions gp+1

kp
encode

the relevant information about coordinates x1, . . . , xp

into a
limited number r

p

of functions. If coordinate x

p

was relevant
for the slow dynamics, these interfaces should di↵er from
the ones computed previously, i.e., from the functions gp

kp�1
.

Therefore, after the interfaces gp+1
kp

have been optimized, we
approximate these functions in the least squares sense from the
basis of previous interfaces gp

kp�1
. The expansion coe�cient

vector u

kp of the best approximation for the interface gp+1
kp

,

f

kp =
X

lp�1

u

kp(l
p�1)gp
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, (D1)

is found as the solution of the linear system
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kp = b

kp, (D2)
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These quantities can be obtained from the correlation matrix
C

0
p,p+1 in Eq. (C2). The matrix A

p is just a submatrix of
C

0
p,p+1, whereas the vector b

kp can be computed via
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where we have used recursion formula Eq. (35). Next, we can
compute the approximation error for gp+1

kp
via
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Finally, we compute the average approximation error
E(p) = 1

rp

P
rp

kp=1 E(p)
kp and use it as a measure of the

importance of coordinate x

p

.
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