Sparse learning of stochastic dynamical equations

Lorenzo Boninsegna, Feliks Niiske, and Cecilia Clementi

Citation: The Journal of Chemical Physics 148, 241723 (2018); doi;: 10.1063/1.5018409
View online: https://doi.org/10.1063/1.5018409

View Table of Contents: http://aip.scitation.org/toc/jcp/148/24

Published by the American Institute of Physics

Articles you may be interested in

Identification of simple reaction coordinates from complex dynamics
The Journal of Chemical Physics 146, 044109 (2017); 10.1063/1.4974306

Quantum theory of multiscale coarse-graining
The Journal of Chemical Physics 148, 102335 (2018); 10.1063/1.5010270

Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux
sampling expression
The Journal of Chemical Physics 148, 124109 (2018); 10.1063/1.5012854

Importance sampling large deviations in nonequilibrium steady states. |
The Journal of Chemical Physics 148, 124120 (2018); 10.1063/1.5003151

Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials
parametrized from machine learning

The Journal of Chemical Physics 148, 241706 (2018); 10.1063/1.5009502

Hierarchical modeling of molecular energies using a deep neural network
The Journal of Chemical Physics 148, 241715 (2018); 10.1063/1.5011181

AI P The Journal of
Chemical Physics

PERSPECTIVES



http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/56140772/x01/AIP-PT/JCP_ArticleDL_110117/AIP-3075_JCP_Perspective_Generic_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Boninsegna%2C+Lorenzo
http://aip.scitation.org/author/N%C3%BCske%2C+Feliks
http://aip.scitation.org/author/Clementi%2C+Cecilia
/loi/jcp
https://doi.org/10.1063/1.5018409
http://aip.scitation.org/toc/jcp/148/24
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4974306
http://aip.scitation.org/doi/abs/10.1063/1.5010270
http://aip.scitation.org/doi/abs/10.1063/1.5012854
http://aip.scitation.org/doi/abs/10.1063/1.5012854
http://aip.scitation.org/doi/abs/10.1063/1.5003151
http://aip.scitation.org/doi/abs/10.1063/1.5009502
http://aip.scitation.org/doi/abs/10.1063/1.5009502
http://aip.scitation.org/doi/abs/10.1063/1.5011181

THE JOURNAL OF CHEMICAL PHYSICS 148, 241723 (2018)

® CrossMark
¢

Sparse learning of stochastic dynamical equations

Lorenzo Boninsegna, Feliks Niske, and Cecilia Clementi
Department of Chemistry and Center for Theoretical Biological Physics, Rice University,

Houston, Texas 77005, USA

(Received 6 December 2017; accepted 8 March 2018; published online 30 March 2018)

With the rapid increase of available data for complex systems, there is great interest in the extraction
of physically relevant information from massive datasets. Recently, a framework called Sparse Iden-
tification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations
of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical
systems which are frequently used to model biophysical processes. We prove the asymptotic correct-
ness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We
discuss algorithms to solve the sparse regression problem arising from the practical implementation
of SINDy and show that cross validation is an essential tool to determine the right level of sparsity.
We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-
dimensional potential and the projected dynamics of a two-dimensional diffusion process. Published

by AIP Publishing. https://doi.org/10.1063/1.5018409

l. INTRODUCTION

The last decade has seen a dramatic increase in our ability
to collect or produce large amounts of high resolution and high
dimensional data associated with complex physical and chem-
ical systems, both by means of experimental measurements or
computer simulations. In many different scientific fields, rang-
ing from high energy physics to neuroscience, the “big-data”
problem has spurred interest in data analysis methods that can
condense massive datasets into a minimal amount of essential
information and/or can detect relevant patterns and anomalies
in the distribution of the data.

In the specific case of molecular systems, a large body
of work has been devoted to defining collective coordinates
and reaction pathways from molecular dynamics simulation
data.'> However, most of the proposed techniques are descrip-
tive and do not provide a functional link relating the variables
to the observed behavior. Mathematical approaches that have
been proved to be optimal to reduce the complexity of the
data by dimensionality reduction and/or coarse graining (in
time or space) usually do not offer a straightforward physical
interpretation of the results. Here we take a different approach
and make a first step toward the definition of methods to learn
the functional form of a molecular model from the available
data.

Assuming an extensive sampling of a given set of vari-
ables describing a system is available for a certain time frame,
different data-driven methods have been proposed to “learn”
how to propagate the system to future times, either in terms
of the original variables or in a reduced representation. For
instance, the so-called “equation-free” approach uses local
(in time and space) microscopic simulations to propagate
macroscopic variables to long time scales.® Such an approach
bypasses the need of formulating constitutive equations for
the time evolution of the macroscopic variables of the system
in closed form and provides a practical recipe for multiscale
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simulation. However, it is oftentimes desirable to obtain an
explicit analytical expression for the dynamical equations in
terms of the variables of interest, as they can offer a physico-
chemical understanding of the system. Ideally, one would like
to design approaches that are able to infer such equations from
the available data. Recently, a significant step in this direc-
tion has been proposed for deterministic dynamical systems.*
The Sparse Identification of Nonlinear Dynamics (SINDy)
approach combines ideas from sparse regression>® and com-
pressed sensing’® to automatically discover the terms of the
differential equations (either ordinary* or partial®) that best
represent large sets of time-dependent data, given a suitable
function library (as it will be discussed below). For instance,
it was shown that SINDy can be used to obtain the correct
equation for the low-dimensional slow attractor associated
with the dynamics of a fluid flow past a cylinder that is
described by the Navier-Stokes equations at the microscopic
scale.*

Such a methodology appears to be very promising to
learn effective equations of motion in different fields of appli-
cation, such as molecular systems. A significant difference
that limits the application of SINDy to (macro)molecular
systems is the presence of noise, as their dynamics are usu-
ally non-deterministic. Toward this goal, here we present an
extension of this approach that allows us to derive stochastic
dynamical equations from data, to describe the time evolu-
tion either of microscopic variables or of their transformation
in a different space. For the latter, we combine the SINDy
idea with the formalism of projected stochastic dynamics.!%!!
We show that extensive cross validation is a crucial ingredi-
ent that needs to be added in the sparsification of the solu-
tion for this approach to be successful in the presence of
significant noise and/or limited data. Sparsity enforcement
is a crucial step of the learning procedure since it results
in parsimonious models with few descriptors which balance
accuracy with complexity while avoiding overfitting; thus,

Published by AIP Publishing.
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efficiently implementing Occam’s razor in the models being
investigated.

The manuscript is organized as follows. First, the pro-
posed extension of SINDy to stochastic systems and its theo-
retical underpinnings are outlined. We explain how trajectory
data can be used as an input to formulate a regression prob-
lem approximating the drift and diffusion coefficients of an Ito
process, both in the microscopic and in an effective variable
space. The specific algorithm used to solve the regression is
then detailed, by introducing a cross validation (CV) based
Stepwise Sparse Regression. Such a formalism is employed
to learn dynamical equations from data for two test systems:
the homogeneous diffusion in a one dimensional double well
potential and the projected dynamics along a projected coordi-
nate in a two dimensional potential. Results and implications
are finally discussed.

Il. THEORY
A. Sparse identification of dynamical systems

We start by outlining the SINDy approach for determinis-
tic dynamical systems that was originally proposed in Ref. 4.
The goal is to learn the dynamical equations for a system
described by an ordinary differential equation,

d
X0 = FX(®), ey

where X (1) € R? is the state of the system at time ¢ and F :
RY — R? is the vector field defining the dynamics. For many
complex systems, no closed-form expression for the vector
field F is known and the process can only be observed through
simulation or measurement data X(¢;), [ = 1, ..., N, where
t; < --- < ty are discrete points in time. However, it was
suggested in Ref. 4 to learn the dynamical equation as a linear
combination of a pre-selected dictionary of basis functions.
More precisely, let ®g = (f1, . . ., fk) be a set of K user-defined
trial functions. Making the ansatz,

K
Fi= Z Cixfes (2)
=l

for the ith component of the vector field, one arrives at a system
of N linear equations for each time step by inserting Eq. (2)
into Eq. (1)

d K

—Xi(0) = kzl Cikfi(X(1)). 3)
If the time derivatives on the left hand side of Eq. (3) can be
computed, this defines a linear system

Y,’ = XC,‘, (4)

where Y; € RY contains the time derivatives at all sampled
time steps, X € RN*K contains the evaluations of all basis
functions in dictionary Ok at all time steps and ¢; € RX is the
unknown vector of coefficients

d
Y= EXi(fz),
X1k = fi(X(1)).

J. Chem. Phys. 148, 241723 (2018)

Equation (4) needs to be solved in the least-squares sense, that
is, ¢; becomes the minimizer of

¢ =argmin||Y; - X ciII%. )

c;eRK

In general, the solution & of Eq. (5) will not be sparse. If
the goal is to find the minimal functional form of the vector
field that reliably represents the data among the large number
of possibilities offered in the function dictionary, sparsity of
¢; needs to be enforced. Formally, this can be achieved by
penalizing the L'-norm of the solution and minimizing

& = argmin(||Y; — X¢il[3 + plleill), (6)

¢;eRK

using some positive Lagrange multiplier p which controls the
weight of the sparsity constraint. Algorithms to solve Eq. (6)
will be discussed below.

B. Sparse identification of stochastic dynamics
1. Diffusion processes

In this work, we extend the sparse learning framework
discussed above to stochastic dynamics. Instead of Eq. (1),
we consider dynamics driven by an Ito stochastic differential
equation (SDE)

dX (1) = bX(1)dt + 28 o (X(1))dW,. (7)

Again, X(t) € RY denotes the state of the system at time f,
while b : R? — R? is a vector field called the drift, and
o RY 5 R is a matrix field called the diffusion of the pro-
cess. Moreover, W, denotes a d-dimensional Brownian motion
and the prefactor S is the inverse temperature S = kBLT in
physical applications. The covariance matrix of the diffusion
is commonly denoted by a € R,

alx) = O'T(X)O'()C).

We will also refer to a process like Eq. (7) as a diffusion pro-
cess. We assume the process X(7) to be ergodic with respect
to a unique invariant measure u. Although it is not strictly
necessary for all of what follows, we also assume X(f) to be
reversible with respect to the invariant measure .

A familiar example of such a process is the overdamped
Langevin dynamics

VUX (1)
dX(t) = —————=d 287 Ly dw,, 8
Q) 5 1+4287y ®)

that is, the drift is the gradient of a potential energy func-
tion U (the force) normalized by the friction coefficient v,
while the diffusion matrix is constant. The equilibrium distri-
bution associated with this dynamical process is the Boltzmann
distribution, u(x) « exp(—BU(x)).

A diffusion process is thus generally defined by two com-
ponents, the drift and the diffusion. Both of them can be
estimated from data via the Kramers-Moyal formulae'?

bi(x) = lim |& %(Xi(s) —x)IX(0) = x|, ®
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1
ay) = £ limE | £ 09) - )X - )X = x|, (10)

The expectations above average the linear and quadratic vari-
ation of the process X(s), conditioned on starting at position x
at time s = 0.

If the linear and quadratic time variations on the right hand
side of Egs. (9) and (10) can be computed, a regression problem
analogous to Eq. (5) can be formulated and both drift and dif-
fusion can be approximated as an optimal linear combination
of basis functions.

2. Projected dynamics

In many physical applications, a diffusion process is not
observed through its original state space (e.g., atomic coor-
dinates), but through a projected space of lower dimension
(e.g., dihedral angles or interatomic distances in macromolec-
ular dynamics). In this case, it is desirable to learn a stochastic
dynamical system defined only along the projected variables
from the data, often called an effective dynamics, while dis-
carding the other features. We now investigate this issue by
following the projection formalism previously proposed in
other studies.!®!! It is important to note that there are many
possible ways of defining an effective dynamics on projected
variables (see Ref. 11 for a discussion). In practice, an effective
dynamics in the form of an Ito stochastic differential equation
(that is, without memory terms) is meaningful if the projected
variables capture the slowest dynamical processes and a sepa-
ration of time scales exists in the system. In the following, we
assume this to be the case.

Assume the projection is realized by a map & : RY
— R™, m < d and denote points in the projected space by
z € R™. The level set of a point z is denoted by

T,={reR: &) =2f.

The projected stationary distribution is obtained by averaging
the equilibrium distribution u over the level sets X,

v(2) = / p()J 2 (x) dor, (),
%

where J is the Jacobian determinant of the transformation &
and o, denotes the surface measure on the manifold X,. It
can be shown!! that v defines a probability measure on the
low-dimensional space R™. Also, we can define a probability
measure y, which restricts the equilibrium measure to a level
set by

dp.(6) = —= (0 2(0) dor (), (1

v(2)

for x € X,. Like in Sec. II B 1, an effective dynamics on the
lower dimensional space R™ can now be defined by using the
Kramers-Moyal formulae

1
b (@) = limE [;(&(X(s)) - 2)IX(O) ~ uz] : (12)
1
a0 =E1ime [;(@-(X(s)) — SEEE) - )IX(O) ~ u]
(13)

The difference between these and Egs. (9) and (10) is that
the dynamics is observed along the projection & here and that

J. Chem. Phys. 148, 241723 (2018)

the initial condition is replaced by starting the process from
the distribution y instead of starting deterministically at one
point.

3. Convergence result

Justasin Sec. Il A, we would like to model the components
of the (effective) drift and diffusion terms by a linear combi-
nation of pre-selected basis functions. Estimation of drift and
diffusion from simulation data has been studied for a long time
in many different fields of research, like finance, geoscience,
climate modeling, and many others. A good overview can be
found in Ref. 13. Much attention has been paid to the choice
of the discrete time step, see Ref. 14. Spectral estimators have
been discussed in Refs. 15 and 16, while estimators for coarse
grained dynamics in systems with an explicit multiscale struc-
ture can be found in Refs. 17 and 18. In this work, we use a
simple linear regression based on the linear and quadratic vari-
ations. For infinite data, this regression problem converges to
the best-approximation in a function space of the effective drift
and diffusion Egs. (12) and (13). The proof can be found in
Appendix B. For ease of notation, we define the m-dimensional
vector of finite differences as

eF (1, %) = £() — E(x). (14)

Theorem 1. Let {X(#1),...,X(t.+1)} be a d-dimensional
time series from a diffusion process Eq. (7), sampled with an
uniform time window s. Furthermore, let ® = (fi,...,fx) bea
dictionary of basis functions on the projected space R™. Define
the database matrix X = O(X(1;)) € RXK and introduce the
set of vectors Y;, Z; € RE as

1
Yir = ef (X(t). X(@)). (15)

Zyj1 = z%e? X(ts), X)es (X (t1), X (1)), (16)

Vi,j=1,...,m. Then, as L — oo, s — 0, the solutions {E,-, E,-j} €
RX of the regression problems
& =argmin||Y; - Xeill3, Vi=1,...,m, (17)
C,‘ERK

& = argmin ||Z; — Xeyll3, Vij=1,....,m, (I8)
C,']'GRK

converge to the coefficient vectors of the best approximation
problems

K
& = argmin ||b} — Z ciufil?s. Vi=1,...m,
¢;eRK =1 v
K
~ . 2 ..
&; = argmin ||a§ - Zc,-j,kfkum, Vij=1,...,m,
c; eRK k=1 v

in the space L2 of square-integrable functions with respect to
the measure v.

Thus, the optimal linear combinations approximating the
drift and diffusion read as

K

b= G,

k=1

K
£\«
az = ) Cijifi
k=1
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Please note that the trajectory points X(#;), [ =1, ...,
L + 1 sample from the u equilibrium probability distribution,
hence, using Euclidean norms ||-||> in Egs. (17) and (18) is
appropriate. In fact, a sum over the sampling is equivalent to
a u weighted sum.

C. Learning of effective potentials

In most physical applications, the dynamics of a system
is determined by its potential energy, which is a physically
intuitive quantity. For example, the overdamped Langevin
dynamics in Eq. (8) is defined by the potential energy U,
which generates the drift via its gradient field. Learning the
individual components of the drift separately as in Eq. (17)
can pose a challenge in high dimensional systems since there
is no guarantee that the learned components are generated
by a scalar potential. To circumvent the problem, it is desir-
able to estimate the potential energy directly instead of its
gradient.

For a reversible diffusion process Eq. (7), drift and dif-
fusion define a generalized potential, i.e., there exists a scalar
function, which we call free energy F : R? — R such that'°

a%f(x) = a_l(x)(%v rai=b)| . (19)
Here, we use the notation V - @; to denote the divergence of
the ith row of the covariance matrix a. Equation (19) also
holds for the effective drift and diffusion b%, a¢ after apply-
ing a projection & because the effective dynamics discussed
in Sec. II B 2 inherits reversibility from the original dynam-
ics.!! Therefore, we discuss the projected case in the following,
as estimation of the full dynamics is a special case of this
problem.

Since the gradient of F in Eq. (19) now depends on two
unknowns, we need to estimate one of them first before we
can solve for the free energy gradient. Suppose we have used
the regression of Eq. (18) to obtain an expression for each
component of the diffusion matrix a® (x) as

L

K
as() = e (20)
k=1
This model allows us to evaluate each component of the dif-
fusion and its derivatives at every simulation point. At this
point, we assume that the model Eq. (20) still defines a posi-
tive definite matrix field, which is the case for the applications
we discuss later (Sec. V). Positive definiteness of the diffusion
could also be enforced in the optimization problem, but that
would lead to a more involved problem than the standard linear
regression we consider here.

Next, we can use Eq. (19) and the convergence of linear
variations to the effective drift to set up a regression problem
for the free energy gradient as a linear combination of the
vector fields Vfy, i.e.,

K
VF= Z 0 Vf.
k=1

The regression problem becomes (see Appendix C)

v = argmin ||Y - Dwl|3, 21

weRK

J. Chem. Phys. 148, 241723 (2018)

where Y and D are now given by

- 1 1
Yy = [(af) 1(X(n>)<EV~a§<X(n>)—;eﬂX(ml),X(n))) .

1

0
Dite = 24X,
Zi
Il. METHODS

Our goal is to find a sparse representation to the drift and
diffusion term, which requires computing a sparse solution to
the regression problem Egs. (17) and (18). Standard regres-
sion can be biased toward sparse solutions by introducing a L°
constraint (also known as subset selection) into the standard
optimization process

& = argmin(||Y - Xell3 + pllellp), (22)
C

where the O-norm ||c||p denotes the number of non-zero
components in C.

Unfortunately, the minimization problem Eq. (22) is non-
convex, which makes finding a solution a NP-hard task. One
popular way around this problem is to relax the problem to
a L'-norm constraint, and a sparse solution can then be com-
puted by using one of the many algorithms available, such
as Lasso,>*® matching pursuit*' and its orthogonal variant
OMP.?? or elastic net,”® just to name a few. Independently of
the specific protocol, the solution will have some coefficients
equal to zero.

In principle, any sparsity value can be enforced in the
solution, by tuning the Lagrange multiplier p in Eq. (22).
However, only a subset of these values provides a represen-
tation of the data set that is both accurate and compact. For
instance, we expect an excessively sparse solution ¢ to severely
under-fit and a barely sparse solution to over-fit the data.”*
An under- (over-)fitted model contains less (more) parameters
than can be justified by that data, and both regimes should
be avoided. For this reason, any algorithm enforcing sparsity
needs to be complemented by a criterion that allows us to
assess whether a solution is still statistically meaningful and
that signals whether the over-fitting or under-fitting regimes are
entered, in order to automatically select the sparsity level. We
propose to use the statistical procedure of Cross Validation®
to select solutions with optimal sparsity.

We show in the following that when using Cross Vali-
dation sparsity can be automatically enforced with iterative
algorithmic formulations such as the Stepwise Sparse Regres-
sor (SSR). Despite its intrinsic simplicity and intuitive inter-
pretation, such an algorithm appears to be robust and effective,
as it is discussed below.

A. Sparsity enforcement

The approach we employ to solve the sparse regression
Eq. (22) for stochastic systems is inspired by the iterative
thresholding algorithm proposed by Brunton et al. in their
deterministic SINDy study,4 which works as follows. First, a
standard unconstrained linear regression is solved to compute
a non-sparse solution ¢. Then, coefficients with a magnitude
smaller than a pre-defined threshold value A are set to zero and
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regression is performed on the remaining coefficients, and the
procedure is iterated till no coefficients are found smaller than
A. The threshold parameter A is a sparsification knob which
needs to be tuned appropriately.

We modify the thresholding approach to enforce sparsity
iteratively by removing only one coefficient in every iteration
and use Cross Validation to select the number of iterations,
as it is discussed in Sec. III B. This modification removes the
need of adjusting an external parameter like 4. The pipeline
works as follows:

e A standard least square regression,

¢ = argmin ||Y - Xe|3,
ceRX
is solved to determine a preliminary (non-sparse)
solution €.

e One coefficient is set to zero. Different criteria can be
used in principle to select which coefficient to remove
at each iteration. Here, the one coefficient with the
smallest absolute value is set equal to zero, i.e.,

E,»=0:i=mkin|6k|.

This particular choice resembles the thresholding pro-
tocol proposed in Ref. 4, with the additional advantage
that the solution sparsity equals the number of itera-
tions on which the algorithm is being run, which makes
solution sparsity programmable exactly.

e Standard regression is performed again on the remain-
ing degrees of freedom

Y = X[:, 71e[1],
where the colon notation X[:, k] identifies the kth col-

umn of the matrix and findicates the set of all dictionary
indexes but i, which has been removed.

e The procedure is iteratively repeated until Cross Vali-
dation indicates that the optimal sparsity level (i.e., the
number of iterations) 3 in the solution € is reached.

We call this algorithm the Stepwise Sparse Regressor
(SSR) and introduce the shorthand notation

SSR(X, YY), (23)

to indicate the solution ¢ obtained upon running the algorithm
on g iterations. Such a solution is g-sparse, e.g., has g zero
coefficients and n = K — g non-zero coefficients. In the follow-
ing, we are going to refer to the parameter n as the solution
size, while discussing the results.

Once Cross Validation is used to identify the number
of iterations corresponding to the optimally sparse solution,
the algorithm is parameter free and does not require any
preliminary training phase before use.

A complete SSR run may require a large number of
regressions if the basis is large and the final solution is very
sparse. However, producing the simulation data remains the
main computational burden. Alternative build-up approaches
such as Orthogonal Matching Pursuit>* have been investigated,
but appeared to be less robust, in that it would get stuck in
suboptimal minima more readily than the SSR.

J. Chem. Phys. 148, 241723 (2018)

B. Cross validation

The specific number of iterations on which the Stepwise
Sparse Regression needs to be run to find the optimal solution
is determined by a Cross Validation (CV) calculation,?® a sta-
tistical validation technique that has risen to great popularity in
the interdisciplinary fields of model and hyperparameter selec-
tions (see Ref. 24 for an introductory self contained discus-
sion). The underlying idea is straightforward and summarized
below.

Let us assume, we have a family of parametric models
(M(Ay), ..., M(A4,))depending on a hyperparameter A which
takes values A, ..., 4, and we would like to select the one
model that fits best a given data set D. In the original CV for-
mulation, the full data set is split into two disjoint subsets and
each model in the family is alternatively trained on one of them
first and then tested on the other. The cross validation score is
the average deviation ¢ of the predictions of the trained model
from the actual test set, and it measures how accuracy and
predictivity are balanced in that model. The set of parameters
yielding low values of ¢ are selected and identify “optimal”
models in the family.

Here, we use CV to select the size n of the optimal solu-
tion to the linear regression problem Eq. (22), which plays the
role of the hyperparameter A from the last paragraph. The fam-
ily of models to validate is now a set of SSRs with different
solution size n = K — g (or, equivalently, different sparsity ¢),
ie.,

{SSR‘f}q=1 ..... K’

where the notation introduced in Sec. III A is used. CV is run
on each model to generate a family of cross validation scores
O[SSR,].

We use a k-fold cross validation formulation, where the
full dataset is split into k batches, each of them playing alter-
natively the role of the test set in a k step procedure. Let us start
by partitioning the dataset D containing N data points p into
k disjoint equivalent subsets A;, which are selected randomly,
ie., U;A; = D, A; N A; = 0. Moreover, let us introduce the
shorthand

Xp, = X[pa»:l, pa; = UP,
PEA;

where the notation X[k, :] indicates the kth row of the matrix.
Then, the cross validation score for each model SSR,, is defined
as an average

k
1
6[SSRg) = 7 > IVa, = K, - SSR(Kp, Vi )gll3.  (24)
i=1
B, =|_ )4, (25)
i#p

where SSR(Xp,, Yp,), indicates the g-sparse linear combina-
tion coefficients generated by running SSR on the training set B;
[see notation Eq. (23)], which are then used to make a predic-
tion Xy, - SSR(Xp,, Yp,)4. The set of 6[SSR,] is then monitored
as afunction of the solution size n = K — g, which usually results
in a behavior close to that represented in Fig. 1. We expect an
intermediate regime of low cross validation score (accurate)
solutions [region (2)] with variable sparsity: all such solutions
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S[SSR.]

FIG. 1. Cartoon representation of the expected behavior of the k fold cross
validation score 6[SSR,] as a function of the solution size n in the linear
combination solution.

are equally good at balancing sparsity and accuracy. In addi-
tion, this regime is bounded from the right and left by and
under- and over-fitting regimes [regions (1) and (3)], respec-
tively. Solutions belonging to both regimes are characterized
by larger values of the cross validation scores, which indicate
that accuracy is decreasing. Intuitively, the one solution sep-
arating regime (2) from regime (1) is what we call optimally
sparse 7 since

o[n—1] o[n]

—_—>»1, —— =
o[n] on+1]

The 77 — 7i + 1 gap in the § values is a clear signal that increas-

ing sparsity by one additional unit compromises the model

predictive power.

In the following, the optimally sparse solution 7i is chosen
by identifying such a transition point in the cross validation
score curves. Please note that the over-fitting regime (3) may
be absent if the database of chosen functions in the dictionary
is not very redundant. On the contrary, under-fitting can always
be accomplished. An even scarcer and poorer dictionary would
immediately result in both regimes (2) and (3) missing from
plot Fig. 1, the model being heavily under-fitted.

All cross validation calculations reported below were
performed using Python routines available in sklearn.?’

IV. HOMOGENEOUS DIFFUSION
IN A DOUBLE WELL POTENTIAL

We illustrate our sparse regression protocol by apply-
ing it to overdamped homogeneous diffusion data in a one

J. Chem. Phys. 148, 241723 (2018)

dimensional double well polynomial potential Fig. 2

1 au
Ux)= =x* =43 +9x? —3x, — =2x> —12x% + 18x - 3,
2 dx

(26)

to recover the drift of the process from the data. Five indepen-
dent trajectories were generated by integrating Eq. (8) using
the gradient in Eq. (26). We computed the time increments,
Eq. (15), and averaged them over discrete bins as explained
in Appendix A 1. We illustrate the performance of the sparse
regression on two different dictionaries ® and ®’. Each dic-
tionary consists of K = 20 basis functions of the form [1, x, x2,
x3, .. .]. Details about the dataset and the specific composition
of the two dictionaries are provided in Appendix A, Egs. (A2)
and (A3). The first four entries in both databases correspond
to the functions composing the drift term used to generate the
data [1, x, x>, x>]. We refer to these four functions as analytic
basis functions in the following.

Figure 3(a) shows the cross validation score dg from
Eq. (25) for the first dictionary, @, as a function of the solution
size n. As the number of surviving coefficients n decreases
(from right to left), the cross validation score stays constant;
however, going from a four term n = 4 to a three term n = 3
solution causes the cross validation score to increase by several
orders of magnitude, which suggests that sparsity is now too
extreme and compromises the model predictivity. The signal
is clear, as indicated by the plot of ratios 6[n — 1]/6[n] as a
function of n [inset in Fig. 3(a)]. The position of the gap in
the CV score curve suggests that n = 4 is the optimal solu-
tion sparsity, which is associated with a §g = 1.49 - 107 CV
score.

Figure 3(b) shows the sparsity progress matrix, which
monitors the linear combination status as a function of spar-
sity. The (i, j) entry in the matrix refers to the function f; in the
dictionary, when the solution only contains n = j terms (i.e.,
after 20 — n iterations). The color code is as follows: gray pix-
els indicate that the coefficient ¢; is still alive, whereas white
pixels are used for coefficients that have been removed. A hor-
izontal black line indicates the optimal solution size 77, as from
the cross validation score plot, and the corresponding pixels
are also colored in black. A light blue color is used to mark
the analytic basis functions. Please note that no coefficient is
resuscitated during the SSR iterations after it is removed from
the dictionary in a previous iteration.

6
4 301
2
10 1 —
~~
3 0 \&3/ FIG. 2. Potential energy profile U(x) (left panel) and its
S \b gradient U’(x), which equals the opposite of the force
> -10 (right panel).
-4
_30 4
-6 . .
-1 0 1 2 3 4 5 -1 0 1 2 3 5
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FIG. 3. Results from applying the SSR algorithm to a trajectory generated by diffusion in the potential of Eq. (26), using a function dictionary @. [Panel (a)]
Cross validation score is plotted as a function of solution size n. The inset shows the ratio 6[n — 1]/6[n] as a function of n. Vertical red lines indicate the number
of non-zero coefficients /7 = 4 in the optimal solution. [Panel (b)] Sparsity progress matrix: any (i, j) (gray) white entry indicates that coefficient c; is (non)-zero
after K — j (K = 20) iterations. A horizontal black line indicates 77 and the corresponding coefficients are colored in black. The four dictionary basis functions
[1, x, x%, x3] have survived and are highlighted in a blue color. [Panels (c)—(e)] Comparison between the exact gradient U’(x) (black solid line) and solutions
U’(x) = Y efi(x) (blue solid lines) with decreasing solution size n values (or increasing sparsity, from left to right). Red markers represent the binned time

increments as from Eq. (9).

The optimal solution only contains the analytic basis
functions and reads as

Uh(x) = € O(x) = —2.98 + 17.84x — 11.82x% + 1.96x°. (27)

This expansion is an accurate approximation to Eq. (26), as it
can be seen by comparing coefficients and from panel (d) in
Fig. 3.

It is instructive to compare the optimal solution Eq. (27)
to a slightly less sparse n = 5 and to a sparser n = 3 solution.
The explicit expansions for these cases are

U'_s(x) = =2.98 + 17.43x — 11.75x* + 1.98x> + 0.4 sin x,
(28)

U)_y(x) = ~2.88 + 14.5x — 3.89x%, 29)

and are plotted together with the gradient Eq. (26) in Figs. 3(c)
and 3(e). The n = 5 solution contains the analytic functions and
an extra small oscillatory term and accurately approximates
the gradient, § = 7.8 - 107>. By contrast, the sparser solution
n =3 1is deprived of one key dictionary ingredient and does not
perform well, as shown in Fig. 3(e) and the much larger cross
validation score § =9- 107!,

Let us now discuss the solution to the problem Eq. (9)
when a different dictionary ® is used. Results are summarized
in Fig. 4, using the same format as in Fig. 3.

The cross validation score plot in Fig. 4(a) shows a similar
trend as in Fig. 3(a), but a clear gap in the § values is now
missing and suggests that an optimal solution is somewhere

in the range between n = 5 and n = 10. The transition point
it; =7 is selected as the value of n maximizing the CV score
ratio 6[n — 1]/8[n], as shown in the inset. It is worth noting
that the maximum amplitude of the ratio is here two orders
of magnitude smaller than in Fig. 3(a). The progress matrix
in Fig. 3(b) shows that the three analytic terms [x, x*, x3] are
present in the optimal solution, but fy = 1 is not (first column),
and there are additional contributions. The actual expansion
U’(x) = &0’ (x) reads as

U'(x) = 17.85x — 12.68x” +2.11x° + 9.6 1 exp (-50(x - 3)?)
—2.97 exp (=50(x - 4)*) - 18.77 exp (-0.6(x — 4)’)
+12.97 [tanh®(x - 4) + 1] . (30)

Performing a CV score based SSR on the two different
dictionaries produces two solutions with different levels of
sparsity and cross validation scores. Both of them succeed at
capturing the double well feature Figs. 3(c) and 4(c) of the
potential Eq. (26). As a matter of fact, a Taylor expansion of
the ®@’-solution Eq. (30) returns a polynomial series which is
in consistent with Eq. (27).

However, the solution associated with dictionary ®’ is less
parsimonious than what was found for the dictionary ® con-
sidered above, and it is associated with a larger cross validation
score

56=149-10* < g =5.6-107°.
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FIG. 4. Sparse regression results for a dictionary ®” # ®, using the same notation and color code as in Fig. 3. [Panel (a)] Cross validation score as a function of
solution size n. The inset shows the ratio 6[n — 1]/6[n] as a function of n. Vertical red lines indicate the number of non-zero coefficients /7’ = 7 in the optimal
solution. [Panel (b)] Sparsity progress matrix. [Panels (c)—(e)] Comparison between the exact gradient U’(x) (black solid line) and solutions U =3 & E;{ ®'(x)
(blue solid lines) with decreasing solution size n (or increasing sparsity, from left to right). Red markers represent the binned time increments as from Eq. (9).

Even though ¢ # &, the gradient is still accurately approximated.

For this reason, the solution for dictionary ® should be favored
over ®’. We show in Sec. IV A that even if different dictio-
naries return different optimal solutions, the comparison of
results for different dictionaries leads to the identification of
the maximally sparse solution.

A. Greedy search

The results discussed above indicate that the performance
of the SSR algorithm is affected by the composition of the
dictionary used. The resulting optimal solutions are quantita-
tively different but qualitatively very similar to one another.
This section is devoted to investigating this issue systemati-
cally.

The comparison of Figs. 3 and 4 shows that the cross
validation signature when the SSR identifies that the correct
(maximally sparse) solution is much stronger than for the case
of a less sparse solution.

This consideration suggests that, instead of proceeding
by iteratively removing functions from the dictionary, cross
validation could be used to extensively test all possible combi-
nations of basis functions and compare the results to determine
the maximally sparse solution. That is, given a large reference
dictionary, all possible combinations of functions (with a given
sparsity) could be considered and the corresponding CV-score
estimated and compared.

We illustrate this idea by defining a large reference dictio-
nary Q of M = 100 basis functions. The two previously used
dictionaries are included in this large one ®, ® c Q. The
standard (non-sparse) linear regression problem,

: 2
¢g = argmin [|Y — Xpcl3,
C

can be solved for each sub-dictionary § c Q with n < M
functions, and the associated cross validation score 6y can
be computed. If the §¢ values for all possible sub-dictionaries
6 c Q and different n values are tabulated, the optimal solution
can be identified by comparing the change in cross validation
as a function of the dictionary size. Such a procedure evaluates
and compares different levels of sparsity in a greedy fashion
and can in principle replace the need of an iterative sparse
regression algorithm.

For a very large reference database of M functions, such a
brute force approach becomes computationally very demand-
ing as the number of different sub-dictionaries with n func-
tions is given by the binomial coefficient Cy, = (ZZI ), which
becomes untreatable if n > 1. In order to demonstrate the
approach, we randomly sample m, different n-function dic-
tionaries 6 from €, for increasing values of n, and run CV
validation on each of them (details on specific values of m,
are given in Appendix A).

The main results are shown in Fig. 5, where the cross vali-
dation scores 0 (averaged over several realizations, as detailed
in the Appendix) are plotted as a function of the dictionary
size n.

Each dictionary realization is described by an orange
point (n, Jdg), unless the analytic basis functions [1, x,
x2, x3] c 0,, in which case the point is blue. The mini-
mum cross validation score was selected (marked in black
in Fig. 5) across all points for each dictionary size n,
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FIG. 5. Greedy search in the solution space to the regression problem,
Eq. (22), applied to the two-well potential, Eq. (26). For a given size n, the
cross validation score for a set of 100 different dictionaries d¢,, (subsets
of the large reference dictionary Q) are plotted. Each marker represents a
dictionary instance, and is colored in blue if the dictionary contains the ana-
lytic basis functions [1, x, x2, x3] C 6, or in orange otherwise. The minimal
(optimal) cross validation score min (§;) over all realizations with a given
size n is indicated with a black dashed line. A vertical red line indicates
the solution with optimal sparsity, as determined by the peak in the function
S&[n—1]/6[n], as shown in the inset and represents the optimally sparse solution
0= [l,x,xz,x3].

and the resulting curve is plotted using a dashed black
line.

Figure 5 shows that the optimal sparse solution
6 = [1,x,x2,x%], which is associated with § = 1.49-107* (as
also obtained for the @-solution in Sec. IV), clearly represents
the transition point in the cross validation curve. Any other
n = 4 dictionary has a larger cross validation score, as sig-
naled by the gap between the blue point and all other orange
realizations at n = 4. Moreover, any sparser (n = 3) dictio-
nary has an associated cross validation score larger by several
orders of magnitude. The increase in CV score is a footprint
that a dictionary is missing (at least) a key component (as in
the cross validation score plots in Figs. 3 and 4). As already
observed before, less sparse solutions such as 5 < n < 20 may
reproduce the gradient of the potential equally good or slightly
better and they all have comparable cross validation scores.
When n > 1 (as the size of the dictionary increases), the cross
validation scores start increasing, indicating the over-fitting
regime.

The O’ solution that was found in Fig. 4 is represented by
an =7 orange point in Fig. 5, together with many others that
share the same sparsity.

This greedy analysis shows that cross validation identifies
the analytic basis functions 6 = [1,x,x%,x%] as the optimal
sparse solution to the problem Eq. (17); sparser solutions are
less accurate (larger ), and comparably accurate solutions are
less parsimonious (reduced sparsity), as indicated also by the
plot of 6[n — 1]/6[n] as a function of solution size n (the inset
in Fig. 5).

This analysis calls attention to the shortcoming of the
deterministic SSR algorithm to search for the optimal solu-
tion. As seen in Sec. IV, the performance of SSR depends on
the choice of the database. The deterministic nature of SSR
is not always efficient in searching the solution space of the
non-convex problem and SSR can be trapped in local minima
that provide a sub-optimal solution.

J. Chem. Phys. 148, 241723 (2018)

The performance of the SSR algorithm cannot be a priori
estimated by considering indicators of the ill-conditioning of
the dictionary. For the example of the two dictionaries ® and
®’ used in Sec. IV, the condition number « of the database
does not reflect their performance, as

k(Xe) ~ 107, kXeg) ~ 10°.

Atthe level presented here, the proposed CV-based SSR is
effective at relaxing to a sparse (even if not always the spars-
est) solution, which is dictionary dependent but which still
efficiently captures the main features of the gradient.

B. Effects of sampling noise
on algorithmic performance

In this section, we investigate to what extent the con-
vergence of the sparse regression algorithm is influenced by
the presence of noise in the stochastic system, by using the
double well potential Eq. (26) as a reference system. One
of the main assumptions underlying the proof of Theorem 1
is that the data points are Boltzmann distributed. However,
this condition is met only approximately on a finite size
trajectory.

In order to investigate how deviations from the Boltzmann
distribution affect the performance of the algorithm, we bin
the trajectory along the x-axis in Q bins and introduce the
bin-dependent relative error

i =

Yi - U'(xp)

0 | b

where Y; is the average of the time increments, Eq. (15), asso-
ciated with bin i, and U’ (x;) indicates the average value of the
gradient across all trajectory points x; in bin i. The median
of the error distribution {€;};-1, o over the trajectory sample
used in Sec. IV is approximately 1072 and the largest deviation
is found for the bin located on the top of the energy barrier (see
Fig. 2). The error could be decreased by combining a lower
simulation temperature with longer production times. Here we
mimic these effects by generating new samples Y; in every bin
i with increasingly smaller deviation from the ideal sample,
using a scaling factor f < 1
¥ = MO, 0,

¢ =f - median(e). (32)

The noise distribution A/ was chosen to be Gaussian to approx-
imate the effect of thermal noise. In practice, the same effect
could be obtained by running umbrella sampling simulations
in every bin. The sparse regression was then run on this new,
less noisy data set, for 100 different random 50 basis function
dictionaries ® (all including [1, x, x2, %3] entries) and different
values of the scaling parameter f. The performance of the SSR

TABLE I. Percentage of dictionaries for which SSR converges to the optimal
solution [1, x, x2, x3], as a function of the noise scaling factor f, Eq. (31).
f =—o0is a shorthand indicating no sampling noise.

logiof 0 -3 -6 -9 —c0

% 0 0 46 81 94
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algorithm as a function of the sampling error is reported in
Table 1.

While for large sampling errors the SSR algorithm con-
verges to the optimal solution [1, x, x?, x*] for none of the 100
randomly selected dictionaries, the percentage of dictionar-
ies where the optimal solution is found by the SSR increases
as the sampling noise is reduced. Surprisingly, a handful of
dictionaries still relax to a sub-optimal minimum even in the
absence of noise.

This result indicates that for stochastic systems the sam-
pling quality plays an important role in determining whether
the SSR algorithm gets trapped in a local minimum in the
solution space. Additionally, the effect of the noise reduction
is dictionary-specific, as some dictionaries do not reach the
global minimum till extremely low level of noise.

In practice, relevant (usually high-dimensional) systems
will present large sampling errors and a more robust algorithm
for the search in the solution space is needed.

V. “LEARNING” A PROJECTED DYNAMICS

We apply the analysis protocol discussed in Secs. II-III
to “learn” sparse representations for the drift and diffusion
coefficients of a stochastic dynamics along an effective
coordinate,'” starting from a pre-determined library of basis
functions. As a benchmark, we use a system where the solu-
tion can be computed analytically, that is, the two dimensional
lemon slice potential introduced by Bittracher et al.,”® which
is specified by the polar representation (6, r),

U(r, ¢) = cos (kp) + 10(r — 1)* + % (33)

J. Chem. Phys. 148, 241723 (2018)

FIG. 6. A contour plot U = U(x, y) of the lemon slice potential Eq. (33) is
shown. Seven angular mimima « = 7 can be clearly distinguished. Details are
given in the text.

where « = 7 indicates the number of minima in the energy
landscape, as shown in Fig. 6.

It was previously shown?® that the polar angle ¢ € [,
n] correlates with the first seven eigenvectors of the backward
Fokker Planck operator associated with this potential, which
describe the basin hopping motions. The polar angle ¢ is then a
good candidate for an effective coordinate. Projecting the over-
damped diffusion into this coordinate results in the projected

dynamics
d¢y = b()dt + 2B a($)dn (1),

c (34)

(OGP r
b(¢) = —~«sinkg,  a(¢)=—,

with the constants

(d)

2 4 6 8 10 12 14 16 18 20
n

“n 0 n

0 n

basis function idx o

FIG. 7. Sparse regression results for both drift » (upper panels) and diffusion a (lower panels) are summarized, using the same notation and color code as in
Fig. 3. [Panels (a) and (d)] Cross validation score & as a function of the solution size n, with vertical red lines indicating the optimal solutions 77;, and 7i,. [Panels
(b) and (e)] Sparsity progress matrices, where entries associated with the analytic functions are highlighted with color. [Panels (c) and (f)] Comparison between
actual drift (diffusion) as from Eq. (34) (black line) and the optimal sparse representations b(¢) (@(¢)) obtained with the SSR algorithm (blue). Red markers are

used to indicate estimation from sampling according to Egs. (12) and (13).
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C, = /oo r~Lexp [—IO,B(F -1 - ﬁ/r] dr,
0

Z, = oorexp [—lO,B(F—l)Z—,B/”] dr, 35)

0

& =0.94, gK =6.61.
Z

r r

Both the effective drift b(¢) and diffusion term a(¢) are
shown in Figs. 7(c) and 7(f) as a reference, as black lines.

A stochastic trajectory was generated by simulating a dif-
fusion process in the two-dimensional potential Eq. (33), and
the binned averages of Egs. (15) and (16) were computed from
the simulation data, see Appendix A 1. The time increment s
was chosen to be equal to the integration step. A dictionary ®”’
of K = 20 basis functions was used, with composition given
in Appendix A, Eq. (A4). The dictionary includes the analytic
functions for both b and a, [1, sin 7¢], Eq. (34), to which we
refer as analytic basis functions, as in Sec. IV.

The SSR algorithm with cross validation was used to
obtain a sparse expression for the estimated drift and diffu-
sion terms. The results are summarized in Fig. 7, where the
same notation as in Fig. 4 is used.

The cross validation score plots in Figs. 7(a) and 7(d)
allow us to locate the § transition points and identify the
optimal solutions to Eqgs. (17) and (18).

10!

(a)

FIG. 8. Comparison between the kinetics and thermodynamics from both
the analytic and the data-learned ¢ projected diffusion. (Top panel) MSM
implied time scales plotted as function of the lag time 7: horizontal dashed
lines indicate the actual time scales of the full system. Deviations between
the two dynamics (solid lines) are minimal. (Bottom panel) The stationary
distributions exp (—B.F(¢)) of both the analytic (blue solid line) and the recon-
structed dynamics (b, @) (dashed line with markers indicating the bin centers)
are compared: oscillation frequency is matched exactly, and there is a mimi-
mal deviation in the amplitudes because of sampling errors, particularly close
to the top of the oscillation.

J. Chem. Phys. 148, 241723 (2018)

As 6[n] reaches its minimum at solution size n = 1 for
both the drift and the diffusion, looking at the 6[n — 1]/6[n]
ratio is hereby unnecessary.

The optimal sparsity values 7i, = 1 and /i, = 1 are indicated
by vertical red lines. The optimal solutions read as

b(g) = ¢ - O(8) = 6.39sin(7¢), 6 =4.0-10"2, (36)
a($) = &4 - O(g) = 0.95, §=20-10" (37

as shown in the sparsity progress matrices in Figs. 7(b) and
7(e).

Enforcing sparsity isolates the analytic functions in the
dictionary and makes the solutions of Eq. (37) analogous to
Eq. (34), as shown in the comparison plots of Figs. 7(c) and
().

We simulated the “learned” projected dynamics d¢;
= b(¢)dt + \/2a(¢) B~1dW, using the same simulation param-
eters as in the original dynamics [Eq. (8) with the potential
of Eq. (33)]. We discretized the trajectory data and performed
a Markov State Model analysis.>” Figure 8(a) shows that the
first few time scales of the original dynamics (dashed lines) are
accurately recovered by the learned projected dynamics (solid
lines). Also, the ¢-projected equilibrium distributions of both
dynamics agree, as shown in Fig. 8(b). Thus, the learned pro-
jected dynamics recovers both the full thermodynamics and
long time scale kinetics of the original dynamics.

VI. DISCUSSION

The CV-based sparse regression method SSR presented
above appears to be effective at learning stochastic dynamical
equations. Indeed, the CV analysis allows us to identify the
optimal solution as sparsity is maximized while the model
predictive power is preserved. The key features of the drift
and the diffusion components (e.g., the dynamics) are shown
to be preserved.

For the one dimensional potential Eq. (26), the optimal
solution closely approximates the gradient of the potential, as
shown in Figs. 3(d) and 4(d). Similarly, the optimal sparse
solution for the lemon slice projected dynamics reproduces
the thermodynamics and the long time scale kinetics of the
original model [see Figs. 7(c), 7(f), and 8].

However, the performance of the SSR algorithm and the
specific form of the optimally sparse solution both depend
on the composition of the dictionary of basis functions used
[e.g., compare € in Fig. 3(b) with ¢ in Fig. 4(b)]. The “cor-
rect” solution 8 = [1, x, x2, x3] can be obtained if the solution
space is searched greedily, but the SSR algorithm may return
solutions corresponding to local minima and multiple function
dictionaries need to be considered.

Using ill-conditioned dictionaries containing collinear
basis functions exacerbates the convergence problem as multi-
ple linear combinations are almost equivalent, and picking one
over others is driven by small perturbations due to numerical
noise.

Building a dictionary of strictly linearly independent basis
functions (such as Hermite polynomials or Fourier series) is a
well-established strategy to avoid the “many-solution” prob-
lem from the very beginning. Another popular approach is
to run singular value decomposition (SVD) on the regressor
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matrix and discard these singular values which are within
machine precision (and therefore contribute exclusively to
noise). The reduced set of truncated singular values naturally
defines a space into which the regressor matrix can be pro-
jected. The regression can then be formulated in terms of new
effective variables that are linear combinations of the original
ones and are less noisy by construction; hence, more numer-
ical stability is guaranteed. However, if the goal is learning a
sparse representation of the potential energy driving a dynam-
ical system, dictionary entries bear a physical meaning, and
such interpretation may be lost upon SVD or orthogonaliza-
tion. For instance, if the input coordinates are composed by a
set of contacts or coordinates or angles in a macromolecule,
linear combinations of such quantities may be far from being
physically interpretable.

The main problem in the convergence of the SSR algo-
rithm is that functions are pruned from the dictionary at every
iteration in a deterministic fashion: whenever a given entry
is removed from the database, it cannot ‘“resuscitate” in the
next iterations, and the solution may be funneled into a local
minimum. We believe that introducing stochasticity in the
pruning of entries and allowing the reintroduction of previ-
ously eliminated entries, resembling Monte Carlo techniques,
could significantly improve the performance of the algorithm
and also compensate (at least partially) for collinearity.

Additionally, the approach we adopted to numerically
estimate the drift and diffusion off trajectory data could eas-
ily be replaced by an alternative strategy if needed, as long
as it leads to a regression problem: eventually, sparsity is still
enforced in the same fashion. The increment method we pro-
pose Egs. (9) and (10) has the advantage of being parameter-
free, compared for instance to the work by Stock et al.,’%3!
where for each trajectory point a number of neighbors have to
be defined.

The extension of this approach to real high-dimensional
molecular systems may be non-trivial. The main issue which
could limit the method’s applicability as is is that coordi-
nate binning (used here to reduce the effect of the noise)
is not a viable approach in high dimension. Thus, the time
derivative and the dictionary of basis functions ® have to
be computed at each trajectory point X(#;), [ =1, ..., L,
leading to large non-sparse matrices whose computation and
storage could be computationally challenging. Moreover, it
is reasonable to expect that a dictionary of multivariate basis
functions is more prone to redundancy, with a large number
of suboptimal minima. Current studies address these issues
directly.
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APPENDIX A: DETAILS
1. Binning

Solving sparse regression Eq. (22) usually involves com-
puting, storing, and inverting large matrices (e.g., X, Y)
which scale linearly with the number of frames in a trajectory
N > 1. If the dimension of the system is relatively small, e.g.,
d = 1, the problem can be made more tractable numerically.
Let us start by histogramming the coordinate X into Q bins,
i.e.,

(AD)

.....

where X; indicates the ith bin center and w; indicates the
fraction of data in the ith bin, which we call bin weight.
Subsequently,

X e RVK 5 X e RO
Y e RY 5 Yq € RY,

where Y ¢ entries are averaged over each bin.
The sparse regression Eq. (22) can be cast in the following
weighted regression:

¢ = argmin [|[Wo Yo - WoXoell3 + Allcllo,
c
where the weight matrix W is defined as

ngdiag(wl,...,wQ).

Both the double well potential and projected dynamics
study cases discussed here are d = 1 problems, and the binning
is used in the results presented in the manuscript.

2. Double well potential

The data set D used in the double well potential example
consists of five long independent trajectories of N = 10 steps
each, generated by integrating the dynamics Eq. (8) using a
time increments=5- 1073 withm =1, k3T =1,and y = 1 (arbi-
trary units). The simulations were sufficiently long to ensure
sampling from the equilibrium distribution 7(x) o< exp(—U (x)),
see Eq. (26).

Both the time sequence {X(#;)};=;...v+1 and the set of
simple increments, Eq. (15),

Vot = {X(tm) X(ll)}
s =
were discretized into Q = 90 bins along the x axis, giving rise
to an increment matrix Y € R?.
Two different K = 20 basis function dictionaries ® and
®’ were considered. Both contain the four functions [1, x,
x2, x3] entering Eq. (26), the remaining entries were selected
randomly from a larger set of 100 basis functions. The specific
composition of the two dictionaries reads as
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Ox) =[1, x, xz, x3, x4, xs, x6, x7, x8, 9, xm, sinx, COSX,
sin(6x), cos(6x), sin(11x), cos(llx), tanh(10x), —10tanh?(10x)+ 10e75%"7, (A2)
O'(x)=[1, x, x>, x°, sinx, cosllx, sinllx, -10tanh?(10x)+10, —10tanh’*(10x — 10)+ 10,
e—50x2, e—SO(x—3)2’ e—0.3x2, e—().3(x—3)2’ e—z(x—z)z, e—2(x—4)2’ e—SO(x—4)2, e—O‘G(x—4)2, 6—0.6()(—3)2’
—2tanh’*(2x —4)+2, tanh’(x —4)+1]. (A3)

Each dictionary computed on the binned coordinate generates
a database X € RZ*K : X;; = @;(%;), with ¥; being the value of
the coordinate in the jth bin, Eq. (A1).

N = 50 independent cross validation calculations were
run and the cross validation scores averaged

where 0y is given by Eq. (24). Each CV run, i, is associated
with its own decomposition of the data set into folds

D {A{ﬁ}j:l’_._’s.

3. Greedy sparsity search

We provide a short description of the parameters used in
the greedy search in the solution space for the double well
potential.

The number of independent dictionary combinations

reads as
[ Cuy ifnel2,3,4]
"n=1105  otherwise
Cross validation scores were computed by running Ny = 20

independent 5-fold cross validations and averaging over all
runs as already mentioned.

") =[1, x, % x, x* O

~10tanh?(10x) + 10, &50%,

sin x,

tanh(2x),

The functions in the dictionary computed on the binned coor-
dinate generate a database X € RZ*K . X;j = ©!(¢;), with ¢;
being the value of the coordinate in the jth angular bin [notation
from Eq. (A1)].

Cross validation scores were computed by running
Ny = 50 independent 7-fold cross validations and averaging
over all runs as already mentioned.

APPENDIX B: PROOF OF THEOREM 1

We start by collecting a few facts about the projected
dynamics: for functions f, g of the full state space R?, the
L? scalar product with respect to the measure y is defined

(

4. Projected dynamics

The dataset D for the lemon slice example consists of one
single N = 107 step diffusive trajectory, generated by integrat-
ing dynamics Eq. (8) for U = U(x, y) using a time increment
s=103 withm=1, kgT =1, and vy =1 (arbitrary units). The
simulation was long enough to ensure equilibrium sampling.
The projection coordinate is the polar angle & = ¢.

Both the time sequence {¢(x(#)), y(#1)}21... 41, the sim-
ple increments, Eq. (15),

N

(Yoo Nz{w} |
=1,...,.N

.....

and the squared increments, Eq. (16),

| _ {1 ($(t1) = $(1))? }
=1 2 s =

were discretized into 63 bins along the ¢ € [—r, ] axis, giving
rise to Y,, Y, € RE.

A K = 20 basis function dictionary ®” was considered
such that [1, sin7x] € ®”, Eq. (34). Its specific composition
reads as

cosx sindx, cos4x, sin7x, cos(7x), tanh(10x),
~2tanh®(2x) +2, €2, tanh(x)]. (A4)
{
by
'@ = /]R S8 dux), (B1)

while for functions u, v of the projected space R™, the L? scalar
product with respect to the measure v is analogously defined
by

(u,v>v=/ u(z)v(z) dv(z). (B2)
-

The projection operator P maps a function f(x) on R to Pf (z)
on R™ by averaging the function over level sets X,

Ff(2) = /z J @) dp(x). (B3)
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For functions f(x) € L2, u(z) € LE, the following identity can
be verified:'!

/R J@u(E)) dux) = /]R Pf@u(z) dv(2). (B4)

As a special case, the last equality yields the identity of the
two scalar products for function in L2
/ ,UECN(E) du(x) = / uz(z)dv(z).  (BS)
R R)’ﬂ

|

1
I [®T®]k,k’ -

L—oo

1
2 [®TY"]1¢ -

L—oo

1% [G)TZU]k -

L—oo

By Egs. (B4) and (B5), these expressions can be transformed into

J. Chem. Phys. 148, 241723 (2018)

Now, regression problems, Eqs. (17) and (18), are equiv-
alent to the normal equations

0'ec; = 0"y,
0"0c; =0"7Z;.

(B6)
B7)

By ergodicity of the process, for almost surely all trajectories,
we have that

1 L
7 D S @) (X))

=1
— /R G (§(0)) dpux),
1< 1 .
T D S X(t)—ef (X(t41). X (1))

=1

1

— /IR (€ G)E” [;e;?" (X<s>,X(0>)] du(x),
B LS 09y (Kt X0 (XG0, X0
2L £ s i +1)s j +1/s

1
- g/Rdfk(f(x))Ex [Eef(X(s),X(O))gf(x(s),x(o))] du(x).

1 —00
rlere],, == [ Ao o,

l [@TYi] E—oi)/ P []Ex [le‘.f(X(s),X(O))” dv(z),
L k R s !

1
/R J@E [;ef (X(s),20)IXo ~ yz] dv(2).

1 sc0 1
- [072], Lo, g /R @E [;ef (X(5), z)ef (X(5),3)1Xo ~ ﬂz] dv(2).

In the limit s — 0, the Kramers-Moyal formulae imply that

1 -
/ .fk(z>1E[—e?(X(s),z,~)|Xo~uz] dv(z) =% / fel@b? (2) dv(2),

/ fiDE [—efo«s) z)ef (X(s), Z/)|X0~#z] dv(z) =% / fi@)d () dv(2),

showing that the solutions of the normal equations, Egs. (B6)
and (B7), converge to the solutions of the best approximation
problems for b¢ and a? in the space L2.

APPENDIX C: ESTIMATION OF POTENTIAL ENERGY

The regression problem Eq. (21) also converges to
the best-approximation problem for the generalized energy
Eq. (19) from the basis set of vector fields Vfy, k=1,..., K
The case where no projection is applied can be recovered
by choosing & as the identity on R". The proof uses the
same arguments as in Appendix B, the only difference is the

(

summation over all degrees of freedom. Starting from the
normal equations

D Dy = DTY,
we first find that

1 P
Z[DT ke —ZQ(X(U)—(X(;))

dp(x)

Lo, Z/ Ofi(£(x)) 3ﬁ<’(§(x))
0z

i

/R'" (Vfi, Vfir) dv(2).
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Moreover, the data vector DTY converges to

1 a 1 1
7 [DTY], = Z f"(xu»[( )1<X<n))(EV~a§(X(n>)—;e»f(xm),xm)))]

Lo, Z/ 5fk(€(x))[

ofx(2) -1 1
Z/,,, i [af) (N 5Y ()=

1 1
eV a; (£(x) - E* [;ef(X(S),X(O))])]

J. Chem. Phys. 148, 241723 (2018)

i

dux)

B

dv(z)

i

1
E [;ef(X(s),z)IX(O) ~ ﬂz])]

20 Z/ i(2) [ ag)‘l (%V.af—bf)] (2)dv(2)

0z

/Rm(ka(Z), VF(2))dv(2).
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