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ABSTRACT
Coarse-graining has become an area of tremendous importance within many different research fields. For molecular simulation, coarse-
graining bears the promise of finding simplified models such that long-time simulations of large-scale systems become computationally
tractable. While significant progress has been made in tuning thermodynamic properties of reduced models, it remains a key challenge to
ensure that relevant kinetic properties are retained by coarse-grained dynamical systems. In this study, we focus on data-driven methods
to preserve the rare-event kinetics of the original system and make use of their close connection to the low-lying spectrum of the system’s
generator. Building on work by Crommelin and Vanden-Eijnden [Multiscale Model. Simul. 9, 1588 (2011)], we present a general framework,
called spectral matching, which directly targets the generator’s leading eigenvalue equations when learning parameters for coarse-grained
models. We discuss different parametric models for effective dynamics and derive the resulting data-based regression problems. We show
that spectral matching can be used to learn effective potentials which retain the slow dynamics but also to correct the dynamics induced by
existing techniques, such as force matching.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100131., s

I. INTRODUCTION

Coarse-graining (or model reduction) is the process of describ-
ing a high-dimensional and complex dynamical system by a smaller
set of variables and of providing a new set of governing equations
for this reduced description. Coarse-graining has become a funda-
mental challenge in many different areas of science, such as finance,
atmospheric science, or molecular biophysics. Two of the central
reasons for the importance of coarse-graining are that first, analysis
or numerical simulation of high-dimensional systems is often chal-
lenging or simply infeasible, and second, not all detailed features of
the full system are needed in order to answer questions of scientific
interest. For molecular systems, important contributions to the field
include coarse-graining in structural space, where the physical rep-
resentation of a system is simplified. Several approaches have been
proposed to design coarse-grained models for large molecular sys-
tems that either reproduce structural features of fine-grained (atom-
istic) models (bottom-up)1–6 or reproduce experimentally measured
properties for one or a range of systems (top-down).7–13

An alternative approach is coarse-graining in configurational
space, where a transformation of variables is applied to arrive at
a smaller set of descriptors. Notable examples along these lines
are the Mori–Zwanzig formalism,14–18 conditional expectations,19–21

averaging and homogenization,22 Markov state models and related
techniques,23,24 and diffusion maps.25

The starting point in the design of a coarse molecular model is
the definition of the variables. The choice of the coarse coordinates is
usually made by replacing a group of atoms by one effective particle
and is usually based on physical and chemical intuition. Because of
the modularity of a protein backbone or a DNA molecule, popular
models coarse-grain a macromolecule to a few interaction sites per
residue or nucleotide, e.g., the Cα and Cβ atoms for a protein.26–28

Alternative methods have been proposed to design coarse variables
more systematically.29–31

In this study, we are concerned with the inference of governing
equations for the reduced set of variables, given that these descrip-
tors have already been selected and that simulation data of the full
system are available. Several methods to learn the parameters of
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an effective dynamics from data of the full system have been pro-
posed, most notably the force matching scheme2,3 and the relative
entropy method4 (the two approaches are connected32). Most of
the previous work aimed at recovering correct thermodynamics of
the reduced system, that is, the distribution sampled by the effec-
tive dynamics should equal the distribution of the projected original
process. However, these methods do not determine the equations
for a system’s dynamical evolution (of course there are exceptions,
such as the adaptive resolution approach; see Ref. 33). This means
that most methods may not be able to design coarse-grained mod-
els that can reproduce molecular dynamical mechanisms (e.g., large
conformational changes or assembly mechanisms in protein sys-
tems). Here, we shift the focus to designing coarse-grained models
that reproduce slow dynamical mechanisms of a fine-grained sys-
tem, that is, time scales, metastable states, and transitions in between
them.

In principle, if the dynamical equations of the fine-grained
model are known, the dynamics of the corresponding coarse-grained
variables is given by the Mori-Zwanzig projection formalism,14–17

which introduces a memory term. Even if the memory term can be
simplified with the assumption of a separation of time scales, the
estimation of the quantities involved in the Mori-Zwanzig approach
is nontrivial.18 However, here we are not interested in reproduc-
ing all time scales of the system but just the slowest processes
(e.g., conformational changes or assembly processes in protein sys-
tems). This fact allows us to bypass the Mori-Zwanzig approach
to directly define an effective coarse-grained potential to satisfy
this requirement. Instead of focusing on the learning of dynamical
equations (see, e.g., Refs. 34 and 35), here we build on a frame-
work for parameter estimation of stochastic dynamics introduced
in Refs. 36 and 37. It exploits the fact that slow dynamical pro-
cesses are directly related to low-lying eigenvalues and associated
eigenfunctions of the generator of the dynamics.38,39 A broad range
of methods is available to approximate these spectral components
from simulation data of the full system.23,40–44 Hence, we argue
that the same loss function can be used to learn coarse-grained
dynamics if the focus is on reproducing the slow kinetics and
call the resulting framework the spectral matching estimator. We
derive the optimization problems for two specific use cases of spec-
tral matching: the first is to recover an effective potential within
an overdamped dynamics, and the second is to correct dynamics
obtained from force matching by learning a position-dependent dif-
fusion. Applications to several toy systems and molecular dynam-
ics simulations of alanine dipeptide illustrate the capabilities of the
method and highlight practical details, especially the importance of
regularization.

II. THEORY
A. Full space dynamics

We consider a stochastic process Xt attaining values in d-
dimensional space Rd, where d is typically large. In the case of a
molecular system, Xt represents the coordinates of the molecule
at time t. Even though the methods below are also applicable in
more general contexts, we assume for the purpose of illustration
that the process solves a reversible stochastic differential equation
(SDE),

dXt = [−A(Xt)∇xF(Xt) +∇x ⋅ A(Xt)]dt +
√

2Σ(Xt)dWt . (1)

In this formulation, F is a scalar potential, while A = ΣΣT is
the diffusion matrix, and Wt is Brownian motion. Equation (1) is
the general form of a reversible SDE, where reversibility holds with
respect to the invariant density of Xt , given by μ(x) ∝ exp(−F(x)).
A widely used example of Eq. (1) is the overdamped Langevin
dynamics defined by a potential energy function V and a constant
diffusion a > 0, which is related to temperature T and friction γ
by a = kBT

γ ,

dXt = −a∇xV(Xt)dt +
√

2a dWt . (2)

The generator associated with Eq. (1) is the second order differential
operator

Lf = [−A∇xF +∇x ⋅ A] ⋅ ∇xf + A : ∇2
xf , (3)

with the colon indicating the Frobenius inner product between
matrices. In most practically relevant cases, the operator −L pos-
sesses a discrete set of increasing eigenvalues 0 = κ0 < κ1 < ⋯, with
associated eigenfunctions ψi, i = 0, 1, . . .. Each eigenvalue κi corre-
sponds to the relaxation rate of a dynamical process in the system,45

with characteristic (implied) time scale

ti =
1
κi

. (4)

We are particularly interested in metastable processes; in terms
of the eigenspectrum of (3), it means that there is a cluster of
M eigenvalues κ1, . . ., κM close to κ0 = 0, separated from all
higher eigenvalues by a spectral gap.38–40,46 We can see from
Eq. (4) that these low-lying eigenvalues correspond to slow relax-
ation processes. We thus assume that there is a separation of time
scales between fast and slow processes in the molecular system of
interest.

B. Reduced dynamics
In this study, we consider coarse-graining of system (1) by pro-

jecting the state space Rd into a lower-dimensional space Rm, m ≤ d.
Following Refs. 19 and 47, this projection is realized by a coarse-
graining map ξ : Rd ↦ Rm, x ↦ z = ξ(x). Our objective
is to replace (1) by another reversible SDE defined only on the
lower-dimensional space Rm, with corresponding scalar potential Fξ

and diffusion Aξ . These parameters should meet the following two
requirements:

1. Thermodynamic consistency: The coarse-grained invariant
density ν = exp(−Fξ) should be related to the full state invariant
density by averaging, which we write as19,47,48

ν(z) = ∫ μ(x)δ(ξ(x) − z)dx. (5)

The corresponding scalar potential is then called the potential
of mean force (pmf),

Fξmf (z) = − log ν(z). (6)

J. Chem. Phys. 151, 044116 (2019); doi: 10.1063/1.5100131 151, 044116-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

2. Kinetic consistency: The coarse-grained dynamics should
retain the metastable part of the original dynamics (that is,
the slow processes). If Lξ is the reduced generator analogous
to (3), its leading eigenvalues κξ1, . . . , κξM and eigenfunctions
ψξ1, . . . ,ψξM should match the corresponding eigenvalues and
eigenfunctions of the original system, that is, they should sat-
isfy κξi ≈ κi and ψξi ≈ ψi (in an appropriate sense, please see the
discussion in Sec. II D).

C. Force matching
The thermodynamic consistency can be enforced by force

matching,2,3 a powerful technique to extract the potential of mean
force from simulation data of the full system. It is based on the
fact that the gradient of the pmf solves the following minimization
problem:3,48

∇zFξmf = argminf ∫Rd
∥∇zf (ξ(x)) − Fξlmf (x)∥

2 dμ(x), (7)

where the minimization is over all suitable potential functions
f and Fξlmf is the local mean force.48 The integral in (7) can
be replaced by a data-based regression if sufficient simulation
data are available. One of the difficulties in the practical appli-
cation of this method has been that, in general, a coarse-grained
potential satisfying the thermodynamic consistency includes many-
body terms that are not easily modeled in the energy functions.
Recently, machine learning methods have been used to alleviate this
problem.49–52

D. Spectral matching
In order to achieve kinetic consistency, we build on an idea

presented in Refs. 36 and 37 for parameter estimation in stochastic
dynamics like Eq. (1). The goal is to identify the parameters θ ∈ RN

of a parametric model Lξ
θ of the reduced generator. Given the lead-

ing eigenpairs κi, ψi, or an approximation of those, the idea is to
minimize the discrepancy in the leading eigenvalue equations with
respect to the model parameters. We probe these equations against a
set of test functions f j on the coarse-grained space. The loss function
to be minimized is thus

θ∗ = argminθ
1
2

M

∑
i=1

P

∑
j=1
⟨Lξ

θψi + κiψi, fj⟩2ν . (8)

Alternatively, we can also have the model generator act on the
test functions in (8). These two setups are identical if the model
dynamics are reversible with respect to the measure ν. It is impor-
tant to note that we assume the eigenfunctions ψi to be functions of
the reduced variables z. It follows then that the inner product in (8)
can be approximated using simulation data of the full process.47 For
a justification of the assumption that all ψi are functions of z, please
see Refs. 20 and 53.

III. METHODS
In this section, we discuss two specific use-cases for the spectral

matching estimator as well as details of the practical implementation
of the method.

A. Estimation of a scalar potential
The first use-case arises from the assumption that the effective

dynamics can be modeled using overdamped Langevin dynamics in
a scalar potential Fξθ at a fixed constant diffusion a > 0. The resulting
model generator is

Lξ
θ f = −a∇zFξθ ⋅ ∇zf + aΔzf . (9)

In particular, if the model is a linear expansion into given basis
functions, i.e., Fξθ = ∑

N
n=1 wngn, θ = (w1, . . . ,wN) ∈ RN , spec-

tral matching becomes a linear regression. As the eigenfunctions
are generally constant along metastable sets but can display strong
variations in poorly sampled transition regions, the numerical cal-
culation of eigenfunction derivatives tends to be unstable. Hence,
we apply the model generator to the test functions in (8). We also
include the zeroth spectral pair, as the corresponding matrix entries
are nonzero, to obtain a regression matrix X ∈ R(M+1)P×N and a data
vector y ∈ R(M+1)P,

E(w) = 1
2
∥Xw − y∥2, (10)

Xi,j;n = −⟨ψi, a∇zgn ⋅ ∇zfj⟩ν, (11)
yi,j = −⟨ψi, aΔzfj + κifj⟩ν. (12)

We have found that regression (10) is often ill-conditioned and
requires regularization. Below, we will use elastic net regularization54

with parameters α, ρ, that is,

Eα(w) = 1
2
∥Xw − y∥2 + αρ∥w∥1 +

1
2
α(1 − ρ)∥w∥2

2. (13)

B. Estimation of a diffusion
Next, we consider the situation where an estimate of a thermo-

dynamically consistent scalar potential Fξmf is already available, for
example, by application of the force matching scheme. As a result,
any parametric model Aξ

θ for the diffusion results in a symmet-
ric model generator, and the parameter dependent term in the loss
function can be evaluated as

⟨Lξ
θψi, fj⟩ν = −∫ Aξ

θ ⋅ ∇zψi ⋅ ∇zfj dν, (14)

provided that Aξ
θ is always symmetric. This formulation only

requires first order derivatives, but we need to estimate those deriva-
tives for the eigenfunctions. As a special case, we focus on a lin-
ear expansion into scalar multiples of the identity matrix, i.e., Aξ

θ
= [∑N

n=1 wngn]Id, θ = (w1, . . . ,wN) ∈ RN . Again, spectral matching
leads to a linear regression,

w∗ = argminw

1
2
∥Xw − y∥2, (15)

Xi,j;n = −⟨gn∇zψi ⋅ ∇zfj⟩ν, (16)
yi,j = −κi⟨ψi, fj⟩ν. (17)

Positive definiteness of the diffusion is easily enforced in this set-
ting by requiring positivity of the scalar prefactor at all data points.
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In fact, we will restrict the diffusion to satisfy preselected upper and
lower bounds 0 ≤ amin(z) ≤ amax(z), which can in principle be posi-
tion dependent. If K data points Zt1 = ξ(Xt1), . . . ,ZtK = ξ(XtK ) are
given, we add linear inequality constraints

amax(Ztk) ≥ ∑
N
n=1 wngn(Ztk) ≥ amin(Ztk) ≥ 0 (18)

for all k = 1, . . ., K. The full optimization problem (15) then turns
into a quadratic programming problem.

C. Variational approach
The spectral matching approach discussed above requires an

estimate of the eigenfunctions and eigenvalues of the original sys-
tem. In order to compute approximations of a system’s dominant
eigenfunctions ψi and corresponding eigenvalues κi and also to
analyze simulation data of the effective dynamics, we make use of
the Variational Approach to Conformational Dynamics (VAC),41,43

which is a data-driven method to represent the dominant eigenfunc-
tions from a given library of basis functions. In most of the examples
below, the basis will consist of piecewise constant functions, which
is also referred to as a Markov state model (MSM).23,40,42,55 In a few
cases, we will also use a basis of Gaussian functions, for example, if
we also require derivatives of the slow eigenfunctions. VAC mod-
els are validated using the implied time scale test as described in
Ref. 23. In addition, we employ Bayesian Markov state models56 in
order to obtain errorbars for all estimates of implied time scales.
In order to extract a decomposition of state space into metastable
sets, based on the dominant eigenfunctions, we use the PCCA algo-
rithm.57,58 The software implementation we use is the pyEmma
package.59

IV. RESULTS
A. Three well potential

We first illustrate the idea of spectral matching to model the
overdamped Langevin dynamics [Eq. (9)] in a two-dimensional toy
potential. The energy function is given as a sum of three Gaussians
and a harmonic confinement, that is,

V(x, y) =
3

∑
q=1

aq exp(− 1
2s2

q
[(x −mx

q)2 + (y −my
q)2]) + a4x2 + a5y2.

(19)

The actual values of the parameters are (a1, a2, a3, a4, a5) = (−3,
−5, −4, 0.1, 0.2), (mx

1,my
1) = (0, 0), (mx

2,my
2) = (1, 2), (mx

3,my
3)

= (−4,−1), and (s1, s2, s3) = (0.5,
√

5/6, 0.5); a contour of the
energy is shown in Fig. 1(a). The diffusion constant is a = 1. We gen-
erate a long equilibrium simulation of these dynamics at integration
time step Δt = 10−4, spanning K = 107 time steps.

We use a Markov state model based on a regular grid dis-
cretization of the two-dimensional state space to compute the slow
eigenfunctions and eigenvalues of the system. The slowest process
corresponds to the transition out of the shallow minimum on the
left into the center, and it occurs at a time scale of t1 ≈ 13. The rest
of the spectrum is separated from this process, and there is no other
distinct slow motion to be identified; see the black dots in Fig. 1(c).
We thus set M = 1 (that is, we use only the first nontrivial eigen-
function) and extract the approximate eigenfunction ψ1 from the
MSM.

We attempt to reproduce the energy V in two-dimensional
space from data while not applying any model reduction. We employ
spectral matching and a linear model in combination with the elastic

FIG. 1. Application of spectral matching with a linear model,
cf. Eq. (13), to a two-dimensional test system. (a) The ref-
erence potential Eq. (19). (b) Optimized potential found by
spectral matching. White dots indicate the locations of 82
centers used to define the Gaussian basis and test func-
tions. (c) Comparison of the first five implied time scales of
the reference dynamics (black) and the corresponding time
scales of the learned potential (blue). The spectral match-
ing was designed to reproduce the slowest time scale, as
indeed appears in the figure. (d) Metastable decomposi-
tion obtained by applying 2-state PCCA to an MSM of the
learned dynamics. States are assigned to a macrostate if
their membership is larger than 0.6. Silver dots represent
transition states that cannot be assigned in this way.
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net as in Eq. (13). A regular space clustering of the data at min-
imum distance 0.8 helps us define a set of 82 spherical Gaussian
functions centered at the cluster centers, as shown in Fig. 1(b). These
centers serve to define the test set, while the basis set consists of
the same Gaussians plus the quadratic functions x2, y2 (P = 82,
N = 84). We use uniform widths σbase and σtest for all Gaussians in
the basis set and the test set, respectively. We fix σtest = 0.8, while
σbase and both elastic net parameters α, ρ are treated as hyperparam-
eters. They are determined by 3-fold cross-validation (CV) for all
triples of the form (σbase, α, ρ) ∈ {0.2, 0.4, 0.6, 0.8, 1.0} × {10−6, 10−4,
10−2, 100} × {0.5, 0.8, 0.9, 0.95, 1.0}. The optimal parameter set is
(σbase, α, ρ) = (0.4, 10−4, 0.5); the corresponding solution is displayed
in Fig. 1(b) and agrees well with the original energy landscape in
panel (a).

Using the same simulation parameters as for the original sys-
tem, we generate a realization of the dynamics defined by the opti-
mized potential. An MSM analysis confirms that the slowest time
scale is indeed well reproduced by those dynamics; see Fig. 1(c).
As only the first nontrivial eigenfunction was used in the spectral
matching, we do not expect to reproduce additional time scales
besides the slowest one. Moreover, application of 2-state PCCA to
this Markov model also shows that the decomposition of state space
into metastable sets is the same as for the original potential, as
displayed in panel (d) of Fig. 1.

B. Three well potential with roughness
Here, the performance of the spectral matching is tested

on a perturbed version Vper of the three well potential investi-
gated in Sec. IV A to which 100 small amplitude Gaussians were
added, i.e.,

Vper(x, y) = V(x, y) +
100

∑
q=1

wq exp(− 1
2σ2 [(x − x

0
q)2 + (y − y0

q)2]),

(20)

with σ = 0.2 and (x0
q, y0

q) indicating the center of the qth perturbing
Gaussian; a contour plot of such a potential is shown in Fig. 2(a). The
diffusion constant is a = 1. We generate a long equilibrium simula-
tion of these dynamics at integration time step Δt = 10−4, spanning
K = 6 × 107 time steps.

The dominant time scales ti and eigenfunctions ψi were numer-
ically approximated using the VAC and a basis of 196 Gaussian
features.

Spectral matching was applied to the data set, as exactly the
same functions entering the linear combination Eq. (20) were
employed both as basis and test functions in the procedure. Eventu-
ally, the full set of 105 coefficients {ai}5

1⋃{wq}100
1 is approximated

and compared with the exact result. Regression was solved using
standard implementations, with and without elastic net regulariza-
tion. The first two nontrivial eigenpairs were used in the spectral
matching [that is, M = 2 in Eq. (8)].

The nonregularized solution is shown in Fig. 2(b) and almost
perfectly reproduces the exact potential, panel (a). The regularized
solution is shown in panel (c), and the optimal regularization hyper-
parameters ρ, α = (0.5, 2 × 10−4) were identified by running 3-fold
CV on all tuples of the form (ρ, α) ∈ {0.4, 0.5, 0.6} × {10−4, 2 × 10−4,
3 × 10−4}. The solution is very sparse; only 17 coefficients (out of the
full set of 105) have nonzero values. The position of the three main
energy wells is correctly identified, which correlate with the system’s
slowest dynamics, while most of the roughness of the potential is
washed out. Regularization appears to be a physically meaningful

FIG. 2. Application of spectral matching with a linear model,
cf. Eq. (13), to a rugged potential. (a) The reference poten-
tial is shown and was built by adding 100 small amplitude
Gaussians to Eq. (19), which are responsible for the ripples;
compare with Fig. 1(a). (b) Resulting potential obtained
from running standard linear regression. (c) Optimal solu-
tion obtained after optimizing regularizing hyperparameters
ρ, α by cross-validation. (d) First two implied time scales t1
and t2 estimated from simulations of the reference (black
markers) and the learned potential (blue markers).
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procedure since it systematically filters perturbations, i.e., rugged
local minima, out.

However, the wells are shallower than expected; compare with
Fig. 2(a). In order to investigate if this observation has any effect,
a long equilibrium trajectory was generated by integrating over-
damped Langevin dynamics, using the optimal solution as potential
energy (Δt = 10−4, a = 1), and the associated time scales were esti-
mated using VAC and a Bayesian Markov model in the same setup as
before. Results are shown in Fig. 2(d), where the resulting two slow-
est time scales (blue markers) are compared to the reference ones
(black markers): both t1 and t2 are approximately retained.

C. Recovery of slow kinetics by nonconstant
diffusion

Next, we demonstrate that spectral matching can be used to
recover the slow kinetics of a projected system with the aid of a
nonconstant diffusion. We consider a modified three-well system
[Fig. 3(a)] where the locations of the minima have been changed and
additional peaks have been added to the landscape. The slowest pro-
cess is now the transition out of the shallow minimum on the right.
An equilibrium simulation of 10 × 106 frames at integration time
step Δt = 10−3 serves as the reference data set.

We consider the reduced dynamics along the first coordinate
ξ(x, y) = x. Due to the perturbations of the landscape, the projection
onto x averages both high- and low-energy regions, which signifi-
cantly affects the potential of mean force along x. We apply force
matching using a basis of 71 Gaussian functions centered at grid
spacing 0.2 between x = −7.0 and x = 7.0. A uniform width is selected
by means of CV from the set σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8}. The estimated
potential of mean force for the optimal value σ = 0.2 is represented
by the black line in Fig. 3(b).

We generate simulation data of overdamped Langevin dynam-
ics in the potential of mean force at diffusion a = 1 (using the same
integration time step and number of frames as for the full system).
An MSM analysis of these data shows that the slowest time scale is
decreased by a factor ten, while the next time scale is almost unaf-
fected by the projection; see Fig. 3(d). Thus, the order of the two
time scales is reversed, and the slow kinetics cannot be recovered by
simply rescaling the effective diffusion constant a.

Spectral matching in form (15) is applied to estimate a position-
dependent diffusion. Approximate rates κi, i = 1, 2 are extracted
from a Markov state model of the full process. As the approximate
eigenfunctions ψi need to be functions of z in Eq. (15), we build
another MSM along x alone and extract those approximate eigen-
functions. A spline interpolation is used to ensure differentiability
of the eigenfunctions as required by (15). Even though this MSM
does not yield accurate estimates of both time scales, the correspond-
ing eigenfunctions still capture the structure of both slow transitions
correctly, as we can see by looking at the corresponding PCCA mem-
berships [solid lines in Fig. 3(c)]. The test set is chosen as the same
basis set used for force matching. As a basis set, we choose a set
of N piecewise constant functions, where the corresponding dis-
crete sets are obtained by partitioning the interval [−6, 6] into N
equal-sized parts. The optimal choice N = 10 is again obtained by
3-fold cross-validation on the hyperparameter set N ∈ {5, 10, 20,
30, 40}.

It is important to solve Eq. (15) subject to position dependent
lower bounds amin. Based on our analysis of the full data and the
force matching simulation, we require amin = 0.9, that is, close to
one, in the left metastable set, while we set amin = 0.1 everywhere else.
We also use amax = 1.0 as a global upper bound. The resulting opti-
mal diffusion is indicated by the blue line in Fig. 3(b). This solution
tends to slow down the transition out of the rightmost metastable

FIG. 3. Results for suboptimal projection of a two-
dimensional toy potential. (a) Full potential. (b) Estimates
of the potential of mean force (black curve) and position-
dependent diffusion (blue curve). Red dashed lines corre-
spond to the lower and upper bounds amin, amax for the
diffusion. (c) Metastable memberships extracted by run-
ning three-state PCCA on Markov state models of the full
dynamics after projection onto x (solid lines) and of the
effective simulations (dashed lines). The black line at mem-
bership equal to 0.6 is given as a visual aid to determine
metastable sets. (d) Comparison of the slowest two time
scales obtained from the full simulation (black dots), sim-
ulations of the force matching potential (red dots), and
simulations of the combined effective dynamics using the
force matching potential and the optimized diffusion (blue
dots). Note that we have exchanged the order of the force
matching time scales to ensure all time scales for index i
correspond to the same slow process.
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state, while leaving the time scale of transition out of the center state
unchanged. After running the effective dynamics for 10 × 106 steps
at Δt = 10−3 and analyzing these data by an MSM, we find that both
time scales are indeed approximately restored; see Fig. 3(d). These
effective dynamics are more diffusive than the original system, as is
reflected in the corresponding PCCA memberships being less crisp
[dashed lines in Fig. 3(c)]. The change in the dynamics to restore
the correct time scales perturbs the position of the metastable sets.
However, the three metastable sets of the original dynamics are still
approximately retained.

D. Alanine dipeptide
Finally, we study model reduction of a small molecular system,

alanine dipeptide, which has served as a test case for numerous stud-
ies in recent years. The data set at our disposal is the same that was
used in Ref. 51; please see Ref. 60 for the detailed simulation setup. It
comprises one million frames of Langevin dynamics in explicit water
saved every 1 ps.

It is well known that the system’s metastable processes are effec-
tive functions of its two backbone dihedral angles ϕ, ψ. Therefore,
we study reduction of this system into the two-dimensional space of
those dihedral angles. Figure 4(a) shows the empirical free energy
in this space. It presents a more challenging example than the toy
systems, as the coarse-graining map is nonlinear, and the metasta-
bility is much more pronounced in the sense that there are large
unsampled areas and we only have very few samples in the transi-
tion regions. To simplify matters, we shift both dihedrals in order
to eliminate almost all periodicity from this representation and use
nonperiodic basis functions in what follows.

To obtain the approximate eigenfunctions ψi and eigenvalues
κi, we apply the VAC with 225 spherical Gaussian functions centered

on a regular grid between −2.8 and +2.8 at a distance of 0.4 in each
direction. Their widths are uniformly set to 0.3. We retain the first
three nontrivial slow eigenfunctions, and the corresponding implied
time scales are t1 ≈ 1.2 ns, t2 ≈ 63 ps, and t3 ≈ 36 ps. The correspond-
ing transitions in dihedral space occur, respectively, between the left
and right half of the plane, between the two minima on the left, and
between the two shallow minima on the right.

We use spherical Gaussian functions to represent the force
matching potential and to serve as basis and test functions in the
spectral matching. The centers are placed on a regular grid with grid
spacing 0.4 in all directions, but we remove centers in unpopulated
areas of the state space. As a result, a set of 152 centers for Gaussian
basis functions is obtained. For force matching, we employ 3-fold
cross-validation to determine a uniform width out of the parame-
ter set σ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} to yield an optimal value
σ = 0.6. To ensure that the resulting potential is confining, we eval-
uate the solution on a fine grid and replace its values at unsampled
grid points by a function that grows quadratically with the distance
to the sampled area. A two-dimensional spline is fitted to these data
to yield the final approximation.

To evaluate the kinetic properties of the force matching model,
we generate a set of 100 overdamped Langevin simulations of 15 ns
length at constant diffusion a = 1 and estimate an MSM from these
data. By comparing the three slowest time scales of these dynamics
to the reference values [red and black dots in Fig. 4(d)], we find that
the force matching dynamics are uniformly accelerating the kinetics
by about a factor three.

For spectral matching, we use the optimal Gaussian functions
from force matching to serve as test functions and also use the same
centers to define the basis set. These centers are indicated by red
markers in Fig. 4(b). We globally set amin = 0.3, amax = 1.0 and apply
3-fold CV to determine the widths of the basis set, where σbase ∈ {0.4,

FIG. 4. Results for coarse-graining of alanine dipeptide in
the space of its backbone dihedrals ϕ, ψ. (a) Empirical
free energy in dihedral space from original MD simulation.
(b) Optimized diffusion. Red markers indicate centers of
the Gaussian functions defining the basis and the test set.
(c) Metastable states as identified by four-state PCCA on
an MSM of the effective dynamics. A state is assigned to
a PCCA state if its degree of membership is larger than
0.6. Gray dots represent transition states that cannot be
assigned to a macrostate in this way. (d) Comparison of the
three slowest implied time scales obtained from the refer-
ence dynamics (black dots), simulations of the force match-
ing potential (red dots), and simulations combining the opti-
mal diffusion from (b) and the force matching potential (blue
dots).
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0.45, 0.5, 0.55, 0.6}. The solution of Eq. (15) for the optimal parame-
ter value σbase = 0.55 is shown in Fig. 4(b). The resulting diffusion
is mostly constant at a value close to 0.3 throughout most of the
domain, except for some peaks in boundary or unsampled regions.
By generating another set of 100 simulations of 15 ns simulation time
each, we confirm by an MSM that all three time scales are corrected
by applying the optimized diffusion on top of the scalar potential;
see blue dots in Fig. 4(d). By applying four-state PCCA to the effec-
tive simulations, we also verify the corresponding metastable sets to
coincide with those of the original dynamics; see Fig. 4(c). Thus,
the spectral matching enables us to find a (mostly constant) dif-
fusion term in order to correct the coarse-grained system’s kinetic
properties.

As a further consistency check, we also apply spectral match-
ing with just a single basis function, which is the constant, while
leaving all other settings unchanged. The resulting expansion coef-
ficient, which is nothing more than an effective diffusion constant,
also equals 0.3.

V. CONCLUSIONS
We have introduced spectral matching as a method to define

effective coarse-grained models reproducing the dynamics of a fine-
grained system. Spectral matching can be used as stand alone or in
combination with the existing force matching method. While force
matching enforces thermodynamic consistency, spectral matching
enforces kinetic consistency. The goal of spectral matching is to
retain slow processes of the original dynamics, while faster motions
are considered less relevant and may be lost in the process. For two
specific settings, we have presented the resulting data-based regres-
sion problems that follow from spectral matching. The first setting is
the estimation of an effective potential for an overdamped dynam-
ics, and the second is concerned with learning an effective diffusion
to correct the kinetics induced by force matching. We have demon-
strated by several examples that spectral matching can be used to
learn governing equations which retain the slow part of the dynam-
ics. We found that suitable regularization is vital to the success of the
method.

At this point, the question arises which of the two setups for
spectral matching presented in this study is preferable. The answer
certainly depends on the context: oftentimes, being able to define the
system in terms of a potential energy alone is desirable, especially
with regard to the problem of defining transferable parameters for
coarse-grained systems. A position-dependent diffusion is harder to
interpret in physical terms, and solving the spectral matching prob-
lem for the diffusion seems more involved in practice. On the other
hand, the second setup bears the promise of ensuring both thermo-
dynamic and kinetic consistency and may therefore lead to more
accurate effective models. Also, the second use-case avoids setting
the diffusion to a fixed value, which can be a hard problem in prac-
tice. While it may be possible to use the ratio of original and force
matching time scales, as in Sec. IV D, the example in Sec. IV C
suggests this may not always be possible.

Several questions are left open for future work. While we were
able to use relatively simple basis sets here, the application of the
method to large molecular systems will require the use of more pow-
erful model classes. Using deep learning, or other state of the art
machine learning techniques, in conjunction with spectral matching

is the topic of ongoing research. Along the same lines, the choice of
test functions in high-dimensional spaces is another open problem
to be considered in future work. A better theoretical understanding
of the method is also required. For instance, the limiting behavior
of spectral matching if the test and basis sets become exhaustive
needs to be addressed, especially in the case where a potential differ-
ent from the pmf is estimated by spectral matching. Moreover, we
found in many cases that multiple different solutions with almost
equivalent kinetic properties can be found by spectral matching. A
systematic treatment of this phenomenon will also follow in future
work.
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