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a b s t r a c t

We derive a data-driven method for the approximation of the Koopman generator called gEDMD, which
can be regarded as a straightforward extension of EDMD (extended dynamic mode decomposition). This
approach is applicable to deterministic and stochastic dynamical systems. It can be used for computing
eigenvalues, eigenfunctions, and modes of the generator and for system identification. In addition
to learning the governing equations of deterministic systems, which then reduces to SINDy (sparse
identification of nonlinear dynamics), it is possible to identify the drift and diffusion terms of stochastic
differential equations from data. Moreover, we apply gEDMD to derive coarse-grained models of high-
dimensional systems, and also to determine efficient model predictive control strategies. We highlight
relationships with other methods and demonstrate the efficacy of the proposed methods using several
guiding examples and prototypical molecular dynamics problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Data-driven approaches for the analysis of complex dynamical
systems – be it methods to approximate transfer operators for
computing metastable or coherent sets, methods to learn phys-
ical laws, or methods for optimization and control – have been
steadily gaining popularity over the last years. Algorithms such
as DMD [1,2], EDMD [3,4], SINDy [5], and their various kernel-
[3,6,7], tensor- [8–10], or neural network-based [11–13] exten-
sions and generalizations have been successfully applied to a
plethora of different problems, including molecular and fluid dy-
namics, meteorology, finance, as well as mechanical and electrical
engineering. An overview of different applications can be found,
e.g., in [14]. Similar methods, developed mainly for reversible
molecular dynamics problems, have been proposed in [15]. Most
of the aforementioned techniques turn out to be strongly re-
lated, with the unifying concept being Koopman operator theory
[16–18]. In what follows, we will focus mainly on the generator
of the Koopman operator and its properties and applications.

SINDy [5] constitutes a milestone for data-driven discovery of
dynamical systems. Because of the close relationship between the
vector field of a deterministic dynamical system and its Koopman
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generator, SINDy is a special case of the framework we will intro-
duce in this study. In [19,20], an extension of SINDy to determine
eigenfunctions of the Koopman generator was presented. The
discovered eigenfunctions are then used for control, resulting in
the so-called KRONIC framework. Another extension of SINDy
was derived in [21], allowing for the identification of parameters
of a stochastic system using Kramers–Moyal formulae.

A different avenue towards system identification was taken
in [22,23]. Here, the Koopman operator is first approximated with
the aid of EDMD, and then its generator is determined using the
matrix logarithm. Subsequently, the right-hand side of the differ-
ential equation is extracted from the matrix representation of the
generator. The relationship between the Koopman operator and
its generator was also exploited in [24] for parameter estimation
of stochastic differential equations.

A method for computing eigenfunctions of the Koopman gen-
erator was proposed in [25], where the diffusion maps algorithm
is used to set up a Galerkin-projected eigenvalue problem with
orthogonal basis elements. Two efficient methods for computing
the generator of the adjoint Perron–Frobenius operator based on
Ulam’s method and spectral collocation were presented in [26].
Provided that a model of the system dynamics is available, the
computation of trajectories can be replaced by evaluations of the
right-hand side of the system, which is often orders of magnitude
faster.
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The purpose of this study is to present a general framework to
compute a matrix approximation of the Koopman generator, both
for deterministic and stochastic systems, and to explore a range
of applications. The main contributions of this work are:

1. We reformulate standard EDMD in such a way that it can
be used to approximate the generator of the Koopman
operator – as well as its eigenvalues, eigenfunctions, and
modes – from data without resorting to trajectory integra-
tion. Exploiting duality, this can be extended naturally to
the generator of the Perron–Frobenius operator.

2. We illustrate that the governing equations of deterministic
as well as stochastic dynamical systems can be obtained
from empirical estimates of the generator. Furthermore, we
highlight relationships with related system identification
techniques such as the Koopman lifting approach [22],
SINDy [5], and KRONIC [19], which focus mainly on identi-
fying ordinary differential equations.

3. Lastly, we explore two powerful applications of the approx-
imated Koopman generator. We show that gEDMD can be
used to identify coarse-grained models based on data of the
full system, which is a highly relevant topic across different
research fields, like molecular dynamics simulations for
instance. Moreover, we apply the Koopman generator to
control dynamical systems, providing flexible and efficient
model predictive control strategies.

The efficacy of the resulting methods will be demonstrated
with the aid of guiding examples and illustrative benchmark
problems.

The remainder of this paper is structured as follows: In Sec-
tion 2, we introduce the Koopman operator and its generator
for different kinds of dynamical systems. We then derive an
extension of EDMD for the approximation of the Koopman gen-
erator, named gEDMD, in Section 3. Furthermore, relationships
with other methods are described. Section 4 explores additional
applications of the proposed methods, namely coarse-graining
and the application to control problems. Open questions and
future work are discussed in Section 5.

2. The Koopman operator and its generator

In what follows, let X be the state space, e.g., X ⊂ Rd, and
f ∈ L∞(X) a real-valued observable of the system.

2.1. Deterministic dynamical systems

Given an ordinary differential equation of the form ẋ = b(x),
where b:Rd

→ Rd, the so-called Koopman semigroup of operators
{Kt

} is defined as

(Kt f )(x) = f (Φ t (x)),

whereΦ t is the flowmap, see [4,17,18]. That is, if x(t) is a solution
of the initial value problem with initial condition x(0) = x0, then
Φ t (x0) = x(t). The infinitesimal generator L of the semigroup,
defined as

Lf = lim
t→0

1
t

(
Kt f − f

)
,

is given by

Lf =
d
dt

f = b · ∇xf =

d∑
i=1

bi
∂ f
∂xi
,

see, e.g., [17]. Thus, if f is continuously differentiable, then
u(t, x) = Kt f (x) satisfies the first-order partial differential equa-
tion ∂u

∂t = Lu. The adjoint operator L∗, i.e., the generator of the

Perron–Frobenius operator, is given by

L∗f = −

d∑
i=1

∂(bi f )
∂xi

.

Example 2.1. Throughout the paper, we will use the simple
system

ẋ1 = γ x1,

ẋ2 = δ (x2 − x21),

taken from [27], as a guiding example. In addition to the trivial
eigenfunction ϕ1(x) = 1 with corresponding generator eigenvalue
λ1 = 0, we obtain ϕ2(x) = x1 and ϕ3(x) =

2γ−δ

δ
x2 + x21

with corresponding generator eigenvalues λ2 = γ and λ3 =

δ, respectively. Moreover, products of eigenfunctions are again
eigenfunctions. △

2.2. Non-deterministic dynamical systems

Similarly, the definition of the Koopman operator can be gen-
eralized to stochastic differential equations

dXt = b(Xt ) dt + σ (Xt ) dWt (1)

as described, e.g., in [28], resulting in

(Kt f )(x) = E[f (Φ t (x))]. (2)

Here, E[ · ] denotes the expected value, b:Rd
→ Rd is the

drift term, σ :Rd
→ Rd×s the diffusion term, and Wt an s-

dimensional Wiener process. Given a twice continuously differ-
entiable function f , it can be shown using Itô’s lemma that the
infinitesimal generator of the stochastic Koopman operator is
then characterized by

Lf = b · ∇xf +
1
2
a : ∇

2
x f =

d∑
i=1

bi
∂ f
∂xi

+
1
2

d∑
i=1

d∑
j=1

aij
∂2f
∂xi ∂xj

, (3)

where a = σ σ⊤ and ∇
2
x denotes the Hessian. Properties of

the generator associated with non-deterministic dynamical sys-
tems are studied in [29]. The function u(t, x) = Kt f (x) satisfies
the second-order partial differential equation ∂u

∂t = Lu, which
is called the Kolmogorov backward equation [30]. The adjoint
operator in this case is

L∗f = −

d∑
i=1

∂(bi f )
∂xi

+
1
2

d∑
i=1

d∑
j=1

∂2(aij f )
∂xi ∂xj

so that ∂u
∂t = L∗u becomes the Fokker–Planck equation or Kol-

mogorov forward equation [17].
If µ is a stationary measure for the process Xt , the Koopman

operator can be extended from L∞
µ (X) to the Hilbert space L2µ(X)

with inner product ⟨f , g⟩µ =
∫
X f (x) g(x) dµ(x) [31]. We will

frequently consider this situation in what follows. An important
class of stochastic differential equations are those which are
reversible with respect to a measure µ, which is necessarily a
stationary measure in this case. The Koopman operator becomes
self-adjoint on L2µ(X) in the reversible setting. Reversible systems
can be characterized by the diffusion σ and a scalar potential
F :Rd

→ R, from which the drift is then obtained by

b = −
1
2
a∇F +

1
2
∇ · a,

where the divergence in the second term is applied to each col-
umn of a [32]. The generator of a reversible stochastic differential
equation is a self-adjoint and typically unbounded operator on a
suitable dense subspace of L2µ(X).



S. Klus, F. Nüske, S. Peitz et al. / Physica D 406 (2020) 132416 3

Remark 2.2. For systems of the form dXt = −∇V (Xt ) dt +√
2β−1 dWt , which play an important role in molecular dynamics,

we obtain

Lf = −∇V ·∇f +β−1∆f and L∗f = ∇V ·∇f +∆V f +β−1∆f .

Here, V describes the potential and β is the inverse temperature.
The resulting dynamics are reversible with invariant measure
µ(x) ∼ exp(−β V (x)). The generator L is self-adjoint on L2µ(X)
and it can be shown that, assuming suitable growth conditions
on the potential, the spectrum of L is discrete [33].

Example 2.3. We will use the one-dimensional Ornstein–
Uhlenbeck process, given by the stochastic differential equation

dXt = −α Xt dt +

√
2β−1 dWt ,

which is of the above form with V (x) =
1
2 α x2, as a second

guiding example. The parameter α is the friction coefficient. The
generator becomes self-adjoint in the space L2(ρ) weighted by the
invariant density

ρ(x) =
1√

2πα−1β−1
exp

(
−α β

x2

2

)
and the eigenvalues λℓ and eigenfunctions ϕℓ are given by

λℓ = −α (ℓ−1), ϕℓ(x) =
1

√
(ℓ− 1)!

Hℓ−1

(√
αβ x

)
, ℓ = 1, 2, . . . ,

where Hℓ denotes the ℓth probabilists’ Hermite polynomial [32].
That these functions are indeed eigenfunctions can be verified
easily using recurrence relations for the Hermite polynomials,
i.e., Hℓ+1(x) = xHℓ(x) − H ′

ℓ(x). △

2.3. Galerkin approximation

Given a set of basis functions {ψi}
n
i=1, where ψi:Rd

→ R, a
Galerkin approximation L of the generator L can be obtained by
computing the matrices A,G ∈ Rn×n with

Aij =
⟨
Lψi, ψj

⟩
µ
,

Gij =
⟨
ψi, ψj

⟩
µ
,

(4)

where µ is a given measure. The matrix representation L of
the projected operator L is then given by L⊤

= AG−1. We
define ψ(x) = [ψ1(x), . . . , ψn(x)]⊤. That is, for a function f (x) =∑n

i=1 ci ψi(x) = c⊤ψ(x), it holds that (Lf )(x) = (L c)⊤ψ(x), where
c = [c1, . . . , cn]⊤ ∈ Rn. It follows that an eigenvector ξℓ of L
corresponding to the eigenvalue λℓ contains the coefficients for
the eigenfunctions of L since defining ϕℓ(x) = ξ⊤

ℓ ψ(x) yields

(Lϕℓ)(x) = (L ξℓ)⊤ψ(x) = λℓ ξ
⊤

ℓ ψ(x) = λℓ ϕℓ(x).

In many applications, the reciprocals of the generator eigenvalues
(or their approximations) are also of interest, as they can be
interpreted as decay time scales of dynamical processes in the
system. We will refer to them as implied time scales

tℓ :=
1
λℓ
.

Example 2.4. For the Ornstein–Uhlenbeck process and a ba-
sis comprising monomials of order up to n − 1, i.e., ψ(x) =

[1, x, . . . , xn−1
]
⊤, we can compute the matrix L analytically. Note

that Lψk is again in the subspace spanned by {ψi}
n
i=1. In particular,

for k ≥ 3, we have

(Lψk)(x) = −α (k − 1) xk−1
+ β−1(k − 1)(k − 2) xk−3

and the matrix L ∈ Rn×n is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x x2 x3 x4 x5 x6 ...

1 0 2β−1

x −α 6β−1

x2 −2α 12β−1

x3 −3α 20β−1

x4 −4α 30β−1

x5 −5α
. . .

x6 −6α
.
.
.

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the row and column labels correspond to the respective
basis functions. The eigenvalues of the generator are given by
λℓ = −α (ℓ−1), for ℓ = 1, . . . , n, and the resulting eigenfunctions
whose coefficients are given by the eigenvectors are the (trans-
formed) probabilists’ Hermite polynomials as described above.
An approach to compute Hermite polynomials by solving an
eigenvalue problem, resulting in a similar matrix representation,
is also described in [34]. △

Since we in general cannot compute the required integrals an-
alytically, the aim is to estimate them from data using, e.g., Monte
Carlo integration. More details regarding different types of Galer-
kin approximations and other methods for the approximation of
transfer operators from data can be found in [4,35].

Remark 2.5. Issues pertaining to non-compactness or continuous
spectra of Koopman operators associated with systems of high
complexity are beyond the scope of this paper. Although such
cases can theoretically be handled, the numerical analysis is often
challenging and typically requires regularization, which is, for
instance, implicitly given by Galerkin projections [25]. This is
discussed in detail in the aforecited work by Giannakis. Moreover,
the projected generator does in general not result in a rate ma-
trix, see [36,37] for details on Galerkin discretizations of transfer
operators and their properties.

3. Infinitesimal generator EDMD

EDMD [4,38] was developed for the approximation of the
Koopman or Perron–Frobenius operator from data. However, it
can be reformulated to compute also the associated infinitesimal
generators. We will call the resulting method gEDMD.

3.1. Deterministic dynamical systems

Let us first consider the deterministic case, which – albeit
derived in another way and with different applications in mind
– has already been studied in [19,20] so that we only briefly
summarize and extend these results and then generalize them to
the non-deterministic setting. Detailed relationships with other
methods can be found in Section 3.3. We now assume that we
havemmeasurements of the states of the system, given by {xl}ml=1,
and the corresponding time derivatives, given by {ẋl}ml=1. The
derivatives might also be estimated from data, cf. [5].

3.1.1. Generator approximation
Similar to the Galerkin projection described above, we then

choose a set of basis functions, also sometimes called dictionary,
defined by {ψi}

n
i=1, and write this again in vector form as ψ(x) =

[ψ1(x), . . . , ψn(x)]⊤. Additionally, we define

ψ̇k(x) = (Lψk)(x) =

d∑
i=1

bi(x)
∂ψk

∂xi
(x).
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For all data points and basis functions, this can be written in
matrix form as

ΨX =

⎡⎢⎣ψ1(x1) . . . ψ1(xm)
...

. . .
...

ψn(x1) . . . ψn(xm)

⎤⎥⎦ and

Ψ̇X =

⎡⎢⎣ψ̇1(x1) . . . ψ̇1(xm)
...

. . .
...

ψ̇n(x1) . . . ψ̇n(xm)

⎤⎥⎦ ,
where ΨX , Ψ̇X ∈ Rn×m. The partial derivatives of the basis func-
tions required for ψ̇k(xl) can be precomputed analytically.1 Note
that we additionally need b(xl) which is simply ẋl. If the time
derivatives cannot be measured directly, they can be approxi-
mated using, e.g., finite differences. We now assume there exists
a matrix M such that Ψ̇X = MΨX . Since this equation in gen-
eral cannot be satisfied exactly, we solve it in the least squares
sense – analogously to the derivation of EDMD – by minimizing
∥Ψ̇X − MΨX∥F , resulting in

M = Ψ̇XΨ
+

X =
(
Ψ̇XΨ

⊤

X

)(
ΨXΨ

⊤

X

)+
= Â Ĝ+,

with

Â =
1
m

m∑
l=1

ψ̇(xl)ψ(xl)⊤ and Ĝ =
1
m

m∑
l=1

ψ(xl)ψ(xl)⊤.

We call this approach gEDMD. The advantage is that the generator
might be sparse even when the Koopman operator for the time-t
map is not.

Remark 3.1. The sparsification approach proposed for SINDy,
see [5], can be added in the same way to gEDMD in order to
minimize the number of spurious nonzero entries caused, for
instance, by the numerical approximation of the time derivatives
or by noisy data.

The convergence to the Galerkin approximation in the infinite
data limit will be shown for the non-deterministic case, the
deterministic counterpart follows as a special case. The matrix
M is thus an empirical estimate of L⊤ and we write M = L̂⊤

=

Â Ĝ+. Accordingly, exploiting duality, the matrix representation
of the adjoint operator L∗, the generator of the Perron–Frobenius
operator, is given by M∗

= (̂L∗)⊤ = Â ⊤Ĝ+. A detailed derivation
for standard EDMD, which can be carried over to gEDMD, can be
found in [4]. The convergence of the standard EDMD approxima-
tion to the Koopman operator as the number of basis functions
goes to infinity is discussed in [39]. Whether the results can be
extended to gEDMD will be studied in future work.

Example 3.2. Let us again consider the system defined in Exam-
ple 2.1 using monomials up to order 8. We set γ = −0.8 and
δ = −0.7 and generate 1000 uniformly distributed test points
in [−2, 2] × [−2, 2]. Then gEDMD results in eigenvalues and
(rescaled) eigenfunctions

λ1 ≈ 0, ϕ1(x) ≈ 1,
λ2 ≈ −0.7 = δ, ϕ2(x) = 1.286 x2 + 1.000 x21 ≈

2γ−δ

δ
x2 + x21,

λ3 ≈ −0.8 = γ , ϕ3(x) ≈ x1.

The subsequent eigenfunctions are products of the above eigen-
functions, we obtain, for instance, λ6 ≈ −1.6 = 2 γ with ϕ6(x) =

1.000 x21 ≈ ϕ3(x)2. Note that the ordering of the eigenvalues,
which are typically sorted by decreasing values, and associated
eigenfunctions depends on the values of γ and δ. △

1 Alternatively, automatic differentiation or symbolic computing toolboxes
could be utilized.

3.1.2. System identification
With the aid of the full-state observable g(x) = x, it is possible

to reconstruct the governing equations of the underlying dynam-
ical system. Note that X needs to be bounded here – and for
the identification of stochastic differential equations introduced
below – so that g is (component-wise) contained in L∞(X). Let
ξℓ be the ℓth eigenvector of L̂ and Ξ = [ξ1, . . . , ξn]. Furthermore,
assume that B ∈ Rn×d is the matrix such that g(x) = B⊤ ψ(x). This
can be easily accomplished by adding the observables { xi }di=1 to
the dictionary. In order to obtain the Koopman modes for the full-
state observable, define ϕ(x) = [ϕ1(x), . . . , ϕn(x)]⊤ = Ξ⊤ψ(x).
Then

g(x) = B⊤ ψ(x) = B⊤Ξ−⊤ϕ(x).

The column vectors of the matrix V = B⊤Ξ−⊤ are the Koopman
modes vℓ. We obtain

(Lg)(x) = b(x) ≈

n∑
ℓ=1

λℓ ϕℓ(x)vℓ,

where the generator is applied component-wise. This allows us
to decompose a system into different frequencies. The derivation
of the modes is equivalent to the standard EDMD case, see [4,38]
for more details. Instead of representing the system in terms of
the eigenvalues, eigenfunctions, and modes of the generator, we
can also express it directly in terms of the basis functions, i.e.,

(Lg)(x) = b(x) ≈ (LB)⊤ ψ(x),

which is then equivalent to SINDy, see Section 3.3.

Example 3.3. Using the eigenvalues λℓ and corresponding eigen-
functions ϕℓ(x) as determined in Example 3.2, we can reconstruct
the dynamical system from Example 2.1. Only the Koopman
modes v2 = [0, 0.778]⊤ ≈ [0, δ

2γ−δ
]
⊤, v3 = [1, 0]⊤, and v6 =

[0, −0.778]⊤ ≈ [0, −
δ

2γ−δ
]
⊤ are required for the reconstruction,

the other modes are numerically zero. That is,

b(x) ≈ λ2 ϕ2(x) v2 + λ3 ϕ3(x) v3 + λ6 ϕ6(x) v6 ≈

[
γ x1

δ (x2 − x21)

]
.

Expressing the system directly in terms of the basis functions
results in the same representation, the governing equations are
hence identified correctly in both cases. △

Remark 3.4. In the above example, we assumed that the deriva-
tives for the training data are known or can be computed with
sufficient accuracy. If the derivatives, however, are noisy or inac-
curate, the resulting matrix representations of the operators often
become nonsparse and additional techniques such as denois-
ing, total-variation regularization, or iterative hard thresholding
might be required to eliminate spurious nonzero entries, see
also [5] and references therein. In order to model the presence
of noise, we replace b(xl) by b(xl) + η, where η is sampled from
a Gaussian distribution with standard deviation ς . By adding the
iterative hard thresholding procedure proposed in [5] to gEDMD,
which step by step removes entries larger than a given thresh-
old δ and then recomputes the coefficients, we can eliminate
unwanted entries. The results, however, depend strongly on the
chosen threshold as shown in Fig. 1. The smaller the signal-to-
noise ratio, the larger the threshold needs to be to eliminate
spurious nonzero entries, but a too large threshold will also
eliminate the actual coefficients. The error here is defined to
be the average difference between the true and the estimated
coefficients after 10 iterations of the hard thresholding algorithm.
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Fig. 1. Recovery error as a function of the standard deviation ς for different
thresholds δ. If no thresholding is used, the results coincide with the δ = 1e−4
case. The results show that for inaccurate estimates of the derivatives additional
techniques are required to obtain suitable representations of the system. Pro-
vided that the cut-off value is chosen judiciously, the hard thresholding approach
enables us to recover the correct dynamics even in the presence of noise.

3.1.3. Conservation laws
A function E:Rd

→ R is said to be a conserved quantity if it
remains constant for all t and all initial values, i.e., d

dt E = ∇E ·b =

0, which immediately implies that E is an eigenfunction of the
Koopman generator corresponding to the eigenvalue λ = 0;
such invariants have already been considered in Koopman’s orig-
inal paper [16]. Similarly, eigenfunctions of the Perron–Frobenius
generator associated with λ = 0 represent invariant densities.
Conservation laws play an important role in physics and engi-
neering, but are in principle hard to discover. The relationship
between conservation laws and Koopman eigenfunctions has re-
cently been exploited in [19,20], where conserved quantities are
learned from data. In the same way, we can apply gEDMD to find
non-trivial eigenfunctions corresponding to λ = 0.

3.2. Non-deterministic dynamical systems

Let us now extend these results to stochastic differential equa-
tions of the form (1). Given a set of training data {xl}ml=1 as above,
we assume that {b(xl)}ml=1 and {σ (xl)}ml=1 are known or can be
estimated.

3.2.1. Generator approximation
Let

dψk(x) = (Lψk)(x) =

d∑
i=1

bi(x)
∂ψk

∂xi
(x) +

1
2

d∑
i=1

d∑
j=1

aij(x)
∂2ψk

∂xi ∂xj
(x)

(5)

and

dΨX =

⎡⎢⎣dψ1(x1) . . . dψ1(xm)
...

. . .
...

dψk(x1) . . . dψk(xm)

⎤⎥⎦ .
That is, in addition to the first derivatives of the basis func-
tions, we now also need the second derivatives, which can again
be precomputed analytically. Solving the resulting minimization
problem, this leads to the least-squares approximation

M = dΨXΨ
+

X =
(
dΨXΨ

⊤

X

)(
ΨXΨ

⊤

X

)+
= Â Ĝ+,

with

Â =
1
m

m∑
l=1

dψ(xl)ψ(xl)⊤ and Ĝ =
1
m

m∑
l=1

ψ(xl)ψ(xl)⊤.

As above, we obtain M = L̂⊤
= Â Ĝ+ as an empirical estimate

of the generator and M∗
= (̂L∗)⊤ = Â ⊤Ĝ+ as an estimate of the

adjoint operator.

Proposition 3.5. In the infinite data limit, gEDMD converges to the
Galerkin projection of the generator onto the space spanned by the
basis functions {ψi}

n
i=1.

Proof. The proof is equivalent to the counterpart for standard
EDMD, see [4,38]. Letting m go to infinity, we obtain

Âij =
1
m

m∑
l=1

dψi(xl)ψj(xl) −→
m→∞

∫
(Lψi)(x)ψj(x) dµ(x) =

⟨
Lψi, ψj

⟩
µ

= Aij,

Ĝij =
1
m

m∑
l=1

ψi(xl)ψj(xl) −→
m→∞

∫
ψi(x)ψj(x) dµ(x) =

⟨
ψi, ψj

⟩
µ

= Gij,

where xl ∼ µ. That is, the matrices Â and Ĝ are empirical
estimates of the matrices A and G, respectively. □

Remark 3.6. If the drift and diffusion coefficients of the stochastic
differential equation (1) are not known, they can be approximated
via finite differences. In fact, by the Kramers–Moyal formulae,

b(x) = lim
t→0

bt (x) := lim
t→0

E
[
1
t
(Xt − x)

⏐⏐⏐⏐ X0 = x
]
,

a(x) = lim
t→0

at (x) := lim
t→0

E
[
1
t
(Xt − x)(Xt − x)⊤

⏐⏐⏐⏐ X0 = x
]
.

These expressions can be evaluated pointwise by spawning multi-
ple short trajectories from each data point xl, and then estimating
the expectations above via Monte Carlo. Alternatively, if a single
ergodic simulation at time step t is available, we can also replace
the definition of dψk in (5) by

dψk(xl) =
1
t
(xl+1−xl)·∇ψk(xl)+

1
2 t

[
(xl+1 − xl)(xl+1 − xl)⊤

]
: ∇

2ψk(xl).

It was shown in [21] that in the infinite data limit

lim
m→∞

Âij =

⟨
bt · ∇ψi +

1
2
at : ∇

2ψi, ψj

⟩
µ

.

In this case, gEDMD converges to a Galerkin approximation of the
differential operator with drift and diffusion coefficients bt and at .

Remark 3.7. If the stochastic dynamics (1) are reversible with
respect to the measure µ, we only require first-order derivatives
of the basis. In this case, the Galerkin matrix A in (4) can be
expressed as

Aij =
⟨
Lψi, ψj

⟩
µ

= −
1
2

∫
∇ψi σ σ

⊤
∇ψ⊤

j dµ,

where the drift coefficient enters only implicitly via the invariant
measure µ, see [40]. Using the gradient matrix ∇Ψ ∈ Rn×d,
where each row corresponds to the gradient of a basis function,
the empirical estimator Â for A is then defined as follows:

Â = −
1
2m

m∑
l=1

dψ(xl) dψ(xl)⊤,

with dψ(xl) = ∇Ψ (xl) σ (xl).

Example 3.8. Let us first compute eigenfunctions of the genera-
tor. We assume that {b(xl)}ml=1 and {σ (xl)}ml=1 are known and not
estimated from data.

1. We consider again the Ornstein–Uhlenbeck process de-
fined in Example 2.3. For the numerical experiments, we
set α = 1 and β = 4 and select a basis comprising
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Fig. 2. Eigenfunctions of (a) the Koopman generator and (b) the Perron–Frobenius generator associated with the Ornstein–Uhlenbeck process computed using gEDMD
with monomials of order up to ten. The dashed lines represent the analytically computed eigenfunctions. (c) Eigenfunctions of the Perron–Frobenius generator, where
the basis now comprises 30 Gaussian functions. (d) Sparsity pattern of L̂ computed with gEDMD, (e) sparsity pattern of K̂τ computed with EDMD, and (f) sparsity
pattern of exp(τ L̂), where τ is the lag time used for EDMD.

Fig. 3. (a) Double-well potential. (b) First and (c) second eigenfunctions of the Perron–Frobenius generator. Due to the non-isotropic noise the wells are tilted. The
second eigenfunction clearly separates the two wells. In all plots, blue corresponds to small and yellow to large values. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

monomials of order up to and including ten. Using only
100 uniformly generated test points in X = [−2, 2], we
obtain the Koopman eigenfunctions shown in Fig. 2(a),
which are virtually indistinguishable from the analytical
solution. Standard EDMD would typically need more test
points for such an accurate approximation of the dominant
eigenfunctions, see [35] for details.2 The results for the
Perron–Frobenius generator using monomials are not as
good, see Fig. 2(b). Replacing monomials by a basis contain-
ing Gaussian functions the results improve considerably as
shown in Fig. 2(c). This illustrates that it is crucial to select
suitable basis functions, which are, however, generally not
known in advance. The sparsity patterns of the genera-
tor approximation using EDMD and gEDMD are compared
in Fig. 2(d–f), showing that EDMD leads to less sparse
matrices with additional spurious nonzero entries. △

2. We construct a more complicated example by defining
V (x) = (x21 − 1)2 + x22, which represents the renowned
double-well potential, but then, instead of using isotropic

2 Note that although the definition of the Ornstein–Uhlenbeck process is
slightly different in [35], the systems are in fact identical.

noise, add a state-dependent diffusion term to obtain a
stochastic differential equation of the form (1), with

b(x) = −∇V (x) =

[
4 x1 − 4 x31

−2 x2

]
and σ (x) =

[
0.7 x1
0 0.5

]
.

The system exhibits metastable behavior, where the rare
transitions are the jumps between the two wells. The po-
tential and the two dominant eigenfunctions of the Perron–
Frobenius generator computed with the aid of gEDMD are
shown in Fig. 3. Here, we generated 30 000 test points in
X = [−2, 2] × [−1, 1] and selected a basis comprising 300
radial basis functions (whose centers are the midpoints of
a regular box discretization) with bandwidth σ = 0.2. △

3.2.2. System identification
As for deterministic systems, we can utilize the generator ap-

proximation also for system identification. In order to determine
b, we simply plug in the full-state observable g again. In addition
to the drift term, we need to identify the diffusion term. This can
be accomplished as follows: Note that for ψk(x) = xi xj, it holds
that

(Lψk)(x) = bi(x) xj + bj(x) xi + aij(x).
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Since we already obtained a representation of b in the previous
step, we can subtract the first two terms to obtain aij. Here,
we have to assume that both bi and bj can be written in terms
of the basis functions and that, furthermore, also the functions
multiplied by xj or xi, respectively, are contained in the space
spanned by {ψi}

n
i=1. For instance, if b contains monomials of

degree p, then the dictionary must also contain monomials of
degree p+1. For other types of basis functions, we have to make
sure that the aforementioned requirement is satisfied as well.

Example 3.9. Let us illustrate the recovery of b and a from the
generator representation.

1. For the Ornstein–Uhlenbeck process, we immediately ob-
tain b(x) = (Lψ2)(x) = −α x and a(x) = (Lψ3)(x) −

2 b(x) x = 2β−1, see the matrix representation of the
generator in Example 2.4, which implies σ (x) =

√
2β−1.

Thus, the system is identified correctly.
2. For the double-well problem, we generate 8000 random

points in X = [−2, 2]×[−1, 1] and use the exact values for
b(x) and σ (x). We then obtain an approximation of the gen-
erator whose first six columns for a dictionary comprising
monomials up to order four are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 x21 x1 x2 x22
1 0 0 0 0.49 0 0.25
x1 0 4 0 0 0.5 0
x2 0 0 −2 0 0 0
x21 0 0 0 9 0 0

x1 x2 0 0 0 0 2 0
x22 0 0 0 0 0 −4
x31 0 −4 0 0 0 0

x21 x2 0 0 0 0 0 0
x1 x22 0 0 0 0 0 0
x32 0 0 0 0 0 0
x41 0 0 0 −8 0 0

x31 x2 0 0 0 0 −4 0
x21 x22 0 0 0 0 0 0
x1 x32 0 0 0 0 0 0
x42 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can see that b is recovered correctly by the columns
two and three. Furthermore, for the entries of the matrix
a, we obtain

a11(x) = (Lψ4)(x) − 2 b1(x) x1 = 0.49 + x21,
a12(x) = (Lψ5)(x) − b1(x) x2 − b2(x) x1 = 0.5 x1,
a22(x) = (Lψ6)(x) − 2 b2(x) x2 = 0.25,

which is indeed σσ⊤. Note that using only monomials of
order up to three would allow us to recover b but not a. △

Remark 3.10. It is worth noting that:

1. Although we presented only systems composed of mono-
mials (mainly for the sake of illustration), the proposed
method allows for arbitrary dictionaries containing twice
continuously differentiable functions.

2. We identify a = σ σ⊤ and not σ itself. If it is necessary
to evaluate σ , e.g., when using the identified system to
generate new trajectories, we can obtain it, for instance,
by a Cholesky decomposition of a, see also [40]. Note,
however, that σ is not uniquely defined.

3. The method relies on accurate estimates of the drift and
diffusion terms. Noisy data will lead to nonsparse solutions,
which can then be improved by applying iterative hard
thresholding again, see Remark 3.4. We now add noise
with variance ς = 0.1 to the drift and diffusion terms.

After sparsifying the estimated matrix approximation of
the Koopman generator with a threshold δ = 0.1, we
obtain

b(x) =

[
4.00057 x1 − 4.00012 x31

−1.99998 x2

]
and

a11(x) = 0.50035 + 0.99901 x21 − 0.00016 x41,

a12(x) = 0.49729 x1 − 0.00250 x1 x2 + 0.00097 x31 x2,

a22(x) = 0.25648 + 0.00720 x22.

Note that the noise is picked up by the diffusion term
which might thus be overestimated. Nevertheless, the co-
efficients are still close to the exact solution. Instead of
eliminating small coefficients of (Lψk)(x), we could apply
iterative hard thresholding to the coefficients of aij(x) to
find a parsimonious representation of a(x).

This method to discover the drift and diffusion terms of
stochastic differential equations suffers from the same shortcom-
ings as SINDy: The validity of the learned model depends crucially
on whether or not both b and a can be expressed in terms
of the basis functions and also on the availability of accurate
estimates of the derivatives. Ideally, the resulting model is par-
simonious, minimizing model complexity while simultaneously
enabling accurate predictions without overfitting. Nonsparse so-
lutions typically indicate that the expressivity of the dictionary
is not sufficient or that the data is too noisy. Adding more basis
functions or increasing the size of the data set might alleviate
such problems. However, positing that the model comprises only
a few simple terms, the method presented here allows for the
identification of the governing equations of stochastic dynami-
cal systems. Additionally, the approximation of the generator is
an important problem in itself. The eigenvalues and eigenfunc-
tions contain information about time scales and metastable sets
and can be used for model reduction and control. This will be
described in more detail in Section 4.

3.2.3. Conservation laws
If E is a conserved quantity of a non-deterministic system,

then the definition of the Koopman operator (2) and the partial
differential equation ∂u

∂t = Lu imply that LE = 0, just as in
the deterministic case. Hence, conserved quantities can also be
approximated by extracting non-trivial eigenfunctions associated
with λ = 0 using gEDMD. The same precautions as discussed in
Section 3.1.3 apply.

Remark 3.11. For a stochastic dynamical system in the sense of
Stratonovich, i.e.,

dXt = b(Xt ) dt + σ (Xt ) ◦ dWt ,

a sufficient condition for E to be conserved is

∇E⊤

[
b +

s∑
i=1

σi

]
= 0,

which is similar to the deterministic case. Here, σi denotes the
ith column of σ . This result follows directly from the chain rule
of Stratonovich calculus, see [41,42].

Example 3.12. Consider the noisy Duffing oscillator, i.e., for
α, β, ε ∈ R we have a Stratonovich stochastic differential equa-
tion with

b(x) =

[
x2

−αx1 − βx31

]
and σ (x) = ε b(x).
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To apply gEDMD, we convert it to an Itô stochastic differen-
tial equation using the drift correction formula to correct the
noise-induced drift, which is defined componentwise as

ci(x) =

d∑
j=1

s∑
k=1

∂σik

∂xj
(x) σjk(x), i = 1, . . . , d,

see [43]. We obtain the Itô stochastic differential equation

dXt =
(
b(Xt ) +

1
2 c(Xt )

)
dt + σ (Xt ) dWt with

c(x) = ε2
[

b2(x)(
−α − 3βx21

)
b1(x)

]
.

Setting α = −1.1, β = 1.1, ε = 0.05, choosing a dictionary that
contains monomials, and applying gEDMD, the multiplicity of the
eigenvalue λ = 0 is two and we obtain a conserved quantity of
the form

E(x) ≈
α
2 x

2
1 +

β

4 x
4
1 +

1
2x

2
2 + c,

where c ∈ R is an arbitrary constant. △

3.3. Relationships with other methods

We will now point out similarities and differences between
the methods presented above and other well-known approaches
for systems identification and generator approximation.

3.3.1. SINDy
SINDy [5] was designed to learn ordinary differential equa-

tions from simulation or measurement data. Just like gEDMD, it
requires a set of states and the corresponding time derivatives.
Defining Ẋ = [ẋ1, ẋ2, . . . , ẋm], SINDy minimizes the cost function
∥Ẋ − MSΨX∥F , i.e., MS = ẊΨ +

X . Here, we omit the sparsification
constraints, which can be added in the same way to gEDMD
as described above. Recall that we assume that the full-state
observable is given by g(x) = B⊤ψ(x). SINDy can thus be seen
as a special case of gEDMD since

ẋ = B⊤ψ̇(x) ≈ B⊤Mψ(x) = B⊤Ψ̇X  
Ẋ

Ψ +

X ψ(x) = ẊΨ +

X
MS

ψ(x) = MS ψ(x).

3.3.2. Koopman lifting technique
The Koopman lifting technique [22,23] uses the infinitesimal

generator L for system identification. While tailored mainly to
ordinary differential equations, extensions to stochastic differen-
tial equations with isotropic noise are also considered. First, the
Koopman operator for a fixed lag time τ is estimated from trajec-
tory data with the aid of standard EDMD. Then an approximation
of the generator is obtained by taking the matrix logarithm, i.e.,

L̂ =
1
τ
log K̂τ ,

where K̂τ is the matrix representation of the Koopman operator
with respect to the chosen basis ψ (and lag time τ ). The last
step is to estimate the governing equations in the same way
as illustrated in Example 3.3 for gEDMD. The Koopman lifting
technique does not require the time-derivatives of the states or
the partial derivatives of the basis functions, but only pairs of
time-lagged data. However, the non-uniqueness of the matrix
logarithm can cause problems and a sufficiently small sampling
time τ is needed to ensure that the (possibly complex) eigen-
values lie in the strip {z ∈ C : |ℑ(z)| < π}, where ℑ denotes the
imaginary part. Roughly speaking, only an infinite sampling rate
allows us to capture the entire spectrum of frequencies [23]. Our
approach generalizes to arbitrary systems of the form (1), but the
estimation of the diffusion term can be carried over to the lifting
technique as well. This could be a valuable alternative, e.g., when

only trajectory data is available. If the exact derivatives for the
training data are known, then gEDMD is in general more accurate
than the lifting approach. If, on the other hand, the derivatives
for gEDMD have to be approximated from trajectory data, then
the accuracy depends on the order of the finite-difference ap-
proximation and the step size, while the accuracy of the lifting
approach depends on the lag time and the matrix logarithm
implementation.

3.3.3. KRONIC
KRONIC [19,20], which stands for Koopman reduced order non-

linear identification and control, is a data-driven method for
discovering Koopman eigenfunctions, which are then used for
control and the detection of conservation laws. The approach
is based on SINDy and assumes that an eigenvalue is known a
priori (or simultaneously learns the eigenvalue and correspond-
ing eigenfunction). In our notation, the resulting problem can be
written as(
λℓΨ

⊤

X − Ψ̇ ⊤

X

)
ξℓ = 0,

which, multiplying from the left by ΨX and assuming that ΨXΨ
⊤

X
is regular, becomes the gEDMD eigenvalue problem. This operator
formulation is briefly mentioned in [19] as well. Thus, for deter-
ministic systems, despite their different derivations, gEDMD and
KRONIC are strongly related.

4. Further applications

In addition to identifying fast and slow modes, governing
equations, or conservation laws, the Koopman generator has fur-
ther applications that we will briefly demonstrate.

4.1. Coarse-grained dynamics and gEDMD

4.1.1. Galerkin approximation
In what follows, we describe how models of the Koopman

generator can be used to identify reduced order models of a
(possibly high-dimensional) stochastic dynamical system. To get
started, we recapitulate the model reduction formalism intro-
duced by [40,44]. Assume the stochastic process given by (1)
possesses a unique invariant density µ, and let ξ :Rd

→ Rp be a
coarse-graining function which maps Rd to a lower-dimensional
space Rp. The coarse-graining map induces a reduced probability
measure with density ν on Rp. Consider the space L2ν of square-
integrable functions of the reduced variables z. In fact, L2ν is an
infinite-dimensional subspace of L2µ, if each function f ∈ L2ν is
identified with the function f ◦ ξ ∈ L2µ. Let P be the orthogonal
projection onto L2ν . Define a coarse-grained generator as

Lξ = PLP. (6)

Given suitable assumptions on the original process (1), Lξ is again
the infinitesimal generator of a stochastic dynamics on Rp, with
invariant density ν and effective drift and diffusion coefficient
bξ , aξ [40,44].

First, we show that for a basis set of functions defined only
on Rp, gEDMD converges to a Galerkin approximation of the
coarse-grained generator Lξ :

Proposition 4.1. Let V = span{ψk}
n
k=1 be a subspace of L2ν . Then

gEDMD applied to the functions ψ̃k = ψk ◦ ξ converges to the
Galerkin projection of Lξ onto V. Here, (5) needs to be updated by

dψ̃k(x) = b(x)∇x ξ (x)∇zψ
⊤

k (ξ (x)) +
1
2
(a(x) : Hξ (x))∇zψ

⊤

k (ξ (x))

+
1
2
∇

2
zψk(ξ (x)) :

[
∇ξ (x)⊤a(x)∇ξ (x)

]
,
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where ∇x ξ ∈ Rd×p is the Jacobian of ξ , and Hξ ∈ Rd×d×p

is the tensor of Hessian matrices for each component of ξ . The
Frobenius inner product between a and Hξ is applied to the first two
dimensions of Hξ .

Proof. The expression for dψ̃k(x) follows from the chain rule. It
was already shown in [40] that⟨

ψi, ψj
⟩
ν

=
⟨
ψi ◦ ξ, ψj ◦ ξ

⟩
µ
,⟨

Lξψi, ψj
⟩
ν

=
⟨
L(ψi ◦ ξ ), ψj ◦ ξ

⟩
µ
.

Thus, Proposition 3.5 implies that

Âij →
⟨
Lψ̃i, ψ̃j

⟩
µ

=
⟨
Lξψi, ψj

⟩
ν
,

Ĝij →
⟨
ψ̃i, ψ̃j

⟩
µ

=
⟨
ψi, ψj

⟩
ν
. □

In summary, data of the original process, sampling the dis-
tribution µ, can be used to learn a matrix representation of
the coarse-grained generator (6). This matrix approximation can
then be used to perform system identification, simulation, and
control of the coarse-grained system the same way as described
in Section 3.2.

4.1.2. Separate identification
For a reversible stochastic differential equation (1), we present

an alternative approach to identify the parameters of the corre-
sponding coarse-grained system. The method is related to spec-
tral matching as introduced in [45]. The authors of [40] have
shown that reversibility of the full process implies the dynamics
generated by (6) are also reversible. Recalling that reversible
dynamics are characterized by a scalar potential and the diffu-
sion field, the basic idea is simply to estimate these two terms
separately. The resulting framework, which we will call sepa-
rate identification, consists of four steps, which are only partially
dependent on each other:

Force matching. The scalar potential F ξ of the coarse-grained
dynamics can be estimated by an established technique called
force matching [46,47]. It is based on the fact that the gradient
of F ξ solves the following minimization problem [48]:

∇zF ξ = argmin
g∈(L2ν )p

∫
Rd

∥g(ξ (x)) − f ξlmf (x)∥
2 dµ(x), (7)

f ξlmf = −∇xF · Gξ + ∇x · Gξ , (8)

Gξ = ∇xξ
[
(∇xξ )T∇xξ

]−1
, (9)

where the minimization is over all square-integrable vector fields
g of the reduced variables z, and the divergence is applied sepa-
rately to each column of Gξ in (8). The vector field f ξlmf is called
local mean force, while F is the scalar potential of the full process.

Application of gEDMD. The second step consists of applying
gEDMD to estimate a finite-dimensional model of the coarse-
grained generator Lξ as described in Section 4.1.1, using a basis of
functions {ψi}

n
i=1 defined on the reduced space Rp. In particular,

we obtain an estimate of the Galerkin matrix

Âij =
⟨
Lξψi, ψj

⟩
ν
.

Learning the diffusion field. As already discussed in Remark 3.7,
matrix elements of the reduced generator are given by⟨
Lξψi, ψj

⟩
ν

= −
1
2

∫
∇zψi aξ ∇zψj dν. (10)

It follows that the effective diffusion can be learned by matching
it to the generator matrix Â via (10). Let aξ (θ ) be a paramet-
ric model for the effective diffusion. Then the optimal set of

parameters can be found by minimizing the Frobenius norm error

E(θ ) = ∥Â − A(θ )∥2
F , (11)

A(θ )ij = −
1
2

∫
∇zψi aξ (θ )∇zψj dν. (12)

Determination of the drift. Using the relationship between drift
and diffusion of a reversible system, inserting estimates for F ξ
and aξ into (13) completes the definition of the reduced model

bξ = −
1
2
aξ ∇F ξ +

1
2
∇ · aξ . (13)

The above formulation seems advantageous compared to the
direct system identification described in Section 3.2.2 for several
reasons:

• Separate basis sets can be used to calculate the Galerkin
matrix, the potential, and the diffusion. Specifically, con-
straints on each of these (such as positive definiteness of the
diffusion) can be incorporated into each basis individually.
Moreover, learning of the potential and the diffusion can
also be accomplished using nonlinear models.

• The coordinate functions zi and zi zj, as well as the products
of the coordinate functions with the effective drift, are no
longer required to be contained in the basis set.

• Both force matching and (11) are regression problems, al-
lowing for the use of model validation techniques like cross-
validation.

• The dynamics obtained by combining the learned potential
and diffusion via (13) are automatically reversible.

• By diagonalizing the generator matrix corresponding to A(θ )
above, the spectrum of the learned dynamics can be calcu-
lated directly and compared to the spectrum of the genera-
tor matrix corresponding to A, providing a further means of
model validation.

On the other hand, the direct system identification is more
general since the reconstruction via the local mean force may fail
to yield good approximations of the effective drift in cases where
some parts of the dynamics orthogonal to the low-dimensional
manifold defined by the reaction coordinate are slow.

4.1.3. Example 1: Lemon-slice potential
We consider overdamped Langevin dynamics (see Remark 2.2)

at inverse temperature β = 1 in the following two-dimensional
potential V , expressed in polar coordinates:

V (r, ϕ) = cos(kϕ) + sec(0.5ϕ) + 10(r − 1)2 +
1
r
.

For k = 4, a contour of the potential is shown in Fig. 4(a). Because
of the two singular terms, the system’s state space does not
include the set {(x1, x2) : x1 ≤ 0, x2 = 0}, enabling us to map the
two-dimensional state space to polar coordinates unambiguously.

The polar angle ϕ is a suitable reaction coordinate, so we
choose ξ (x1, x2) = ϕ(x1, x2). Due to the simplicity of the system,
all relevant quantities can be calculated analytically. Using the
full-state partition function Z and two numerical constants C1, C2,
see [49], the invariant distribution, the effective drift and the
effective diffusion along ϕ are given by

ν(ϕ) =
C2

Z
exp (− [cos(kϕ) + sec(0.5ϕ)]) ,

bϕ(ϕ) =
C1

C2
[k sin(kϕ) − 0.5 tan(0.5ϕ) sec(0.5ϕ)] ,

aϕ(ϕ) =
2 C1

C2
.



10 S. Klus, F. Nüske, S. Peitz et al. / Physica D 406 (2020) 132416

Fig. 4. Application of gEDMD with 21 Legendre polynomials to one-dimensional coarse-graining of the two-dimensional lemon-slice potential. (a) Visualization of
the potential. (b) Estimates of the effective drift along the polar angle ϕ obtained directly from the generator matrix (blue), and by combining the solutions of
(11) and (7) via (13) (red). The analytical reference is shown in yellow. (c) Estimates of the effective diffusion along the polar angle ϕ obtained directly from the
generator matrix (blue), and by learning the diffusion via (11) using a Gaussian basis set (red), compared to the analytical reference in yellow. (d) Estimates of the
three slowest implied time scales using a Markov state model (yellow), diagonalization of the generator matrix (blue), and diagonalization of the generator matrix
corresponding to the optimal diffusion (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

We apply coarse-grained gEDMD with a basis set of Legendre
polynomials up to degree 20, scaled to fit the domain [−π, π].
In this example and the next, we use exact expressions for the
drift and diffusion coefficient, as the parameters of the full sys-
tem are usually known in the context of model reduction. From
the generator matrix, we obtain estimates of the effective drift
and diffusion as described in Section 3.2.2. Moreover, we also
apply separate identification to learn the scalar potential and the
diffusion. To this end, we use a basis set of periodic Gaussian
functions centered at equidistant points between ϕ = −2.8 and
ϕ = 2.8. The bandwidth of these Gaussians is determined by
cross-validation, and is found to be 0.1 for force matching and
2.0 for the diffusion. We also enforce positivity of the diffusion
by applying positivity constraints to the regression problem (11).
We see in Fig. 4(b) and (c) that both methods provide accurate
representations of the effective parameters. However, the diffu-
sion estimated from (11) is virtually indistinguishable from the
analytical solution, while the representation obtained from the
polynomial basis is more oscillatory.

We also verify that gEDMD correctly captures the slow dy-
namics in this example. We diagonalize the generator matrix
obtained from the polynomial basis, and compute the first three
implied time scales by taking reciprocals of the first three non-
trivial eigenvalues (leaving out the zero eigenvalue). We compare
these time scales to those extracted from a Markov state model
(MSM) [50] inferred directly from the data. We find in Fig. 4(d)

that the time scales are in very good agreement. As described
above, we also use the generator matrix corresponding to the
optimal A(θ ) to estimate the first three implied time scales, and
find them to match almost perfectly as well.

4.1.4. Example 2: Alanine dipeptide
As a more complex example, we derive a coarse-grained

model from molecular dynamics simulations of alanine dipeptide,
which has been used as a test case in numerous previous studies.
The data set is the same as in reference [51] and comprises one
million snapshots of Langevin dynamics saved every 1 ps. As is
well-known, the positional component of Langevin dynamics be-
haves approximately like an overdamped process, see Remark 2.2,
up to a re-scaling of time. Hence, we apply gEDMD assuming the
original process is overdamped, and we extract this effective unit
of time by comparing the first two implied time scales obtained
from gEDMD and from a reference Markov state model.

The slowest dynamics of alanine dipeptide are captured by
a single internal molecular coordinate, called φ-dihedral angle,
which we choose to be the coarse-graining coordinate. Fig. 5(a)
shows the empirical coarse-grained energy Fφ , and an approx-
imation obtained by applying force matching. The basis set for
force matching consists of 57 periodic Gaussians of bandwidth
1.2, centered at equidistant points between −2.8 and 2.8. The
slowest dynamical process corresponds to the transition across
the highest barrier in this energy landscape.
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Fig. 5. Coarse-grained gEDMD along the φ-angle coordinate of alanine dipeptide, using a basis set of 26 Legendre polynomials (a) Effective energy Fφ , as estimated
by histogramming the molecular dynamics simulation data (black), and by applying force matching with a Gaussian basis set (blue). (b) Estimates of the effective
drift obtained directly from the generator matrix (blue), and by combining the solutions of (11) and (7) via (13) (red). (c) Estimates of the effective diffusion obtained
directly from the generator matrix (blue), and by learning the diffusion via (11) using a Gaussian basis set (red). (d) Estimates of the two slowest implied time
scales using a Markov state model (yellow), diagonalization of the generator matrix (blue), and diagonalization of the generator matrix corresponding to the optimal
diffusion (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We apply gEDMD with the first 26 Legendre polynomials
scaled to fit the domain [−2.7, 2.7]. From the generator matrix,
we extract the effective drift and diffusion, which are depicted by
blue lines in Fig. 5(b) and (c). As a comparison, we also compute
an estimate of the effective diffusion by minimization of (11),
including positivity constraints, with a set of 29 Gaussians of
bandwidth 0.8, where the optimal bandwidth was determined by
cross-validation. The resulting estimate of the diffusion is far less
oscillatory than the direct estimate using the generator matrix,
while the corresponding drift obtained from (13) is similar to the
direct estimate.

Finally, we verify that gEDMD accurately reproduces the spec-
tral properties of the original dynamics. As we can see in Fig. 5(d),
after re-scaling the first two time scales provided by gEDMD by
the effective time unit described above, they agree well with the
results of an MSM analysis. The same is true for the time scales
calculated based on the generator matrix corresponding to the
optimal diffusion obtained by solving (11).

4.2. Control

The predictive capabilities of the Koopman operator have also
raised interest in the control community, where the aim is to de-
termine a system input u such that the non-autonomous control
system ẋ = b(x, u) behaves in a desired way, which results in the

following control problem:

min
u∈L2([t0,te],R)

J(x, u) = min
u∈L2([t0,te],R)

∫ te

t0

x(t) − xref(t)
2
2 + α∥u(t)∥2

2 dt

s.t. ẋ(t) = b(x(t), u(t)),

x(t0) = x0.

(14)

In this formulation, the goal is to track a desired state over the
control horizon [t0, te], and α ∈ R>0 is a small number penalizing
the control cost. In order to achieve a feedback behavior, problem
(14) is embedded into a model predictive control (MPC) [52]
scheme, where it has to be solved repeatedly over a relatively
short horizon while the system (the plant) is running at the same
time. The first part [t0, t0 + h] of the optimal control u is then
applied to the plant, and (14) has to be solved again on a shifted
horizon [t0 + h, te + h].

Since the real-time requirements in MPC are often very hard to
satisfy, a promising approach is to replace the system dynamics
by a surrogate model, and one possibility is to use the Koopman
operator or its generator for prediction. Introducing the variable
z = ψ(f (x)), we obtain a linear system via the approximation L
of the generator:

ż(t) ≈ Lz(t).

However, as we see above, the Koopman operator is only defined
for autonomous systems. Hence, a transformation has to be used
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Fig. 6. Control of the Burgers equation using the Koopman generator and switching control. (a) The shape function used for the distributed control term. (b) The
optimal state (colored) and the reference trajectories (black) for h = 0.05. (c) The optimal switching sequence as a function of the time step h. (d) The tracking error
as a function of the time step h. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(the exception being control-affine systems, where only the au-
tonomous part needs to be modeled). In [53], the control system
was autonomized by introducing an augmented state x̂ = (x, u)⊤,
and DMD was performed on the augmented system. The same
approach was also used in combination with MPC in [54]. This
state augmentation significantly increases the data requirements
(all combinations of states and control inputs should be covered),
such that an alternative transformation was proposed in [55,56]
by restricting u(t) to a finite set of inputs {u1, . . . , unc }. This way,
the control system can be replaced by a finite set of autonomous
systems bui (x) = b(x, ui) for which the corresponding generators
{Lu1 , . . . , Lunc } can be approximated. The control task is thus to
determine the optimal right-hand side in each time step instead
of computing a continuous input u:

min
u∈L2([t0,te],{u1,...,unc })

∫ te

t0

z(t) − zref(t)
2
2 + α∥u(t)∥2

2 dt

s.t. ż(t) = Lu(t)z(t),
z(t0) = ψ(f (x0)).

(15)

Note that the quantization (i.e., the switching control) is encoded
in the function space the control u lives in. For a more detailed
description, the reader is referred to [55].

Regardless of the approach, a drawback of Koopman operator
based surrogate models is that the control freedom is limited by
the finite lag time. While larger lag times are often beneficial for
the approximation of the dynamics, this is counterproductive for
control, as the control frequency is strongly limited. This issue is
overcome by the generator approach (15) since we can choose
arbitrary time steps here, and results on mixed integer optimal
control problems (see, e.g., [57]) suggest that fast switches allow
for solutions of any desired accuracy. Moreover, the continuous-
time generator model is much better suited for switching time
optimization approaches. Therein, the combinatorial problem of

selecting the optimal right-hand side is replaced by a continuous
optimization problem for the time instances τj at which the
right-hand side is switched from the input ui to ui+1:

min
τ∈Rp

∫ te

t0

z(t) − zref(t)
2
2 + α∥u(t)∥2

2 dt

s.t. ż(t) = Luiz(t), for t ∈ [τj−1, τj),
t0 = τ0 ≤ τ1 ≤ · · · ≤ τp ≤ te,
i = 1 + j mod nc,

z(t0) = ψ(f (x0)).

(16)

By fixing the number p of switches, this reformulation of (15) is
now a continuous, finite-dimensional optimization problem for
the switching times with a given switching sequence (cf. [58] for
details), and both open and closed-loop control schemes (using
MPC in the latter case) can be constructed.

Problem (16) was also used in combination with the Koopman
operator in [55], but the discrete-time system prohibits arbitrary
switching points which results in a reduced performance. Using
the generator solves this problem and additionally, there even
exist efficient second-order methods for this problem class [59].

In what follows, we present examples for the two extensions
for MPC based on the Koopman generator. For the deterministic
case, we use the 1D viscous Burgers equation with varying lag
times in an MPC framework (Problem (15)) and for the non-
deterministic case, we control the expected value of an Ornstein–
Uhlenbeck process using both MPC (Problem (15)) and open loop
switching time control (Problem (16)).

4.2.1. Partial differential equations
Consider the 1D Burgers equation with distributed control

ẏ(t, x) − ν∆y(t, x) + y(t, x)∇y(t, x) = u(t)χ (x).
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Fig. 7. Control of the expected value of the Ornstein–Uhlenbeck process. (a) Simulation and generator prediction for u = 5 and u = −5, respectively. (b) Tracking
of a piecewise constant reference trajectory using MPC based on Problem (15). (c) The corresponding optimal input signal. (d) MPC based tracking of a continuous
reference trajectory. (e) Solution of Problem (16) with p = 200 for the reference trajectory xref = tanh(t − 10), see (f). (f) The corresponding optimal trajectories
of the generator model (z, blue line), of three realizations of the Ornstein–Uhlenbeck process (x1 to x3 , dotted lines), and of the expected value of the controlled
process (E(x), dashed orange line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here, y denotes the state depending on space x and time t , and
the system is controlled by a shape function χ (see Fig. 6(a)) that
can be scaled by the input u ∈ {−0.025, 0.075}. The objective is
to track a sinusoidal reference trajectory (shown in black in (b)),
and we do this by solving problem (15) in an MPC framework.
To this end, we approximate the Koopman generator using a
relatively coarse ‘‘full state observable’’ (a grid of 25 equidistantly
distributed points in space) and monomials up to order two. The
data is collected from one trajectory with a piecewise constant
input signal u(t) ∈ {−0.025, 0.075}. It is then divided into
two data sets corresponding to the constant inputs 0.025 and
−0.075, respectively. The time derivative ẏ is computed via finite
differences.

We see in (c) and (d) that with decreasing time steps h
(over which the input u is constant) that the control perfor-
mance increases significantly. While the time step h = 0.5
corresponds to a solution that can be obtained by a Koopman
operator approximation as well, the generator framework allows
us to decrease the time steps and thereby the error by two orders
of magnitude. Note that we can formally also decrease the lag
time for the Koopman operator to increase the performance. In
our experiments, the results were of comparable quality, and
this is likely due to the high robustness of the MPC algorithm,
which can cope well with small model inaccuracies. However,

an advantage of the generator approach is that we can choose
the time step adaptively—in contrast to the Koopman operator
approach, where a change in the lag time requires a different
data set and new computations. This can be beneficial in terms
of computational efficiency and is thus particularly important
for long control horizons (see, e.g., [60]), due to which real-time
capability may otherwise be jeopardized.

4.2.2. Stochastic differential equations
In the case of non-deterministic systems, the generator ap-

proach allows for a very elegant solution of stochastic control
problems. In stochastic (or robust) control (see [61,62] for intro-
ductions), the goal is very often to steer the expected value to
some desired value. In many situations, determining this
expected value (e.g., via Monte Carlo methods) is numerically
challenging. As the Koopman generator for stochastic systems
describes the evolution of the expected value, see (2), problem
(15) can be used to solve a control problem for the expected value
using a deterministic linear system. To this end, we replace the
computation of the initial value by an average over the recent
past:

z0 =
1
h

∫ t0

t0−h
z(t) dt.
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We again consider the Ornstein–Uhlenbeck process from
Example 2.3, with the only difference that we now add a control
input:

dXt = −α (Xt − u) dt +

√
2β−1 dWt ,

with α = 1 and β = 2. We compute two generator approxima-
tions corresponding to u = −5 and u = 5 using monomials up
to order 12. Fig. 7(a) shows the trajectories of the two systems
and the predictions using the corresponding generators, and we
see that the expected values are accurately predicted. We set
h = 0.05 as a discretization for the control u as well as the length
of the input that is applied to the plant in each loop. The MPC
controller based on (15) with the modified initial condition z0
yields very good performance, as is shown for a tracking problem
with a piecewise constant reference value in Fig. 7(b). The corre-
sponding optimal control is shown in Fig. 7(c), and (d) shows that
continuously varying inputs can be approximated equally well.

Finally, we use the switching time reformulation (16) in an
open loop fashion in order to track a tanh profile over 20 s. The
results are shown in Fig. 7(e) and (f), where the optimal input
with p = 200 switches is shown in (e) and the corresponding dy-
namics are shown in (f). We observe a remarkable performance,
as the optimal trajectory of the generator model and the expected
value of the controlled Ornstein–Uhlenbeck process (computed as
the mean over 1000 simulations) are almost indistinguishable.

To summarize, the generator approach yields highly efficient
control schemes both for open and closed-loop control, as the
linear system for the prediction of the expected value requires
no further sampling of multiple noisy trajectories.

5. Conclusion

We presented an extension of standard EDMD to approximate
the generator of the Koopman or Perron–Frobenius operator from
data and highlighted several important applications pertaining
to model reduction, system identification, and control. We illus-
trated that this approach can be used to obtain a decomposition
into eigenvalues, eigenfunctions, and modes and, furthermore,
that SINDy emerges as a special case. The proposed methods were
implemented in Python, the gEDMD code and some of the above
examples are available at https://github.com/sklus/d3s/.

Open questions include the convergence of gEDMD if not only
the number of data points but also the number of basis functions
tends to infinity. It is also unclear which part of the spectrum is
approximated if the generator does not possess a pure point spec-
trum. Furthermore, is it possible to learn coarse-grained dynamics
by only considering the dominant terms of the decomposition
of the system’s equations into eigenvalues, eigenfunctions, and
modes (cf. Example 3.3 and also [45])? Another interesting ap-
plication of gEDMD would be to compute committor functions
or hitting times. Extensions to non-autonomous systems will be
considered in future work.
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