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a b s t r a c t

Recent years have seen rapid advances in the data-driven analysis of dynamical systems based
on Koopman operator theory and related approaches. On the other hand, low-rank tensor product
approximations – in particular the tensor train (TT) format – have become a valuable tool for the
solution of large-scale problems in a number of fields. In this work, we combine Koopman-based
models and the TT format, enabling their application to high-dimensional problems in conjunction
with a rich set of basis functions or features. We derive efficient algorithms to obtain a reduced
matrix representation of the system’s evolution operator starting from an appropriate low-rank
representation of the data. These algorithms can be applied to both stationary and non-stationary
systems. We establish the infinite-data limit of these matrix representations, and demonstrate our
methods’ capabilities using several benchmark data sets.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The data-driven analysis of high-dimensional dynamical systems has been a highly successful research field for several years, with
pplications in fluid dynamics, control theory, molecular dynamics, and many others. Much of the work along these lines has focused
n the infinite-dimensional description of a system using transfer operators or Koopman operators, see [1–5]. For non-stationary or time-
ependent systems, it is often advantageous to consider the forward–backward operator. Its spectral analysis leads to the detection of
oherent sets [6,7]. We will summarily refer to all of these operators as evolution operators in this paper. A host of different methods for
he numerical approximation of evolution operators from simulation or measurement data have been developed. These include extended
dynamic mode decomposition (EDMD) [5,8], the variational approach to conformational dynamics (VAC) [9,10] and its generalization
variational approach to Markov processes (VAMP) [11], as well as canonical correlation analysis (CCA) [12,13]. All of these methods
are closely related, and revolve, in one way or another, around data-based approximations to the Koopman operator on (usually
finite-dimensional) subspaces. For a detailed review and comparison, see [14].

Much of the appeal of these techniques is due to their formulation as data-driven regression problems, which paves the way for the
application of modern machine learning techniques. Examples include kernel-based formulations [13,15–17] and combinations with
deep learning [18,19]. A different avenue towards the solution of high-dimensional problems are tensor products, where functions
and operators on high-dimensional spaces are approximated in linear spaces of products of simple (often univariate) functions. The
expansion coefficients of such a function form a multi-dimensional array, called a tensor. As the size of a tensor grows exponentially
with the dimension, low-rank formats requiring only a manageable number of parameters need to be used. Important examples include
the canonical format [20], the Tucker format [21], and the hierarchical Tucker format [22], with the tensor train (TT) format [23,24] as
an important special case of the latter. The common idea behind these formats is to decompose a high-dimensional tensor into a
network of lower-dimensional tensors. Several applications of tensor decompositions have shown that it is possible to tackle large-
scale problems which cannot be solved using conventional numerical methods, see, e.g., [25–29], and especially [30–32] for quantum
chemistry applications.
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Table 1
Notation used in this work.
Symbol Description

H, L(H) General Hilbert space, space of bounded linear operators

L2ρ0 , L
2
ρ1
, L2µ Weighted L2-spaces

V,W Finite-dimensional Hilbert spaces or subspaces

ψ, φ; η, ζ (Orthonormal) bases of V and W, respectively

PV Orthogonal projection onto V

Tτ ,Kτ ,Fτ Perron–Frobenius, Koopman, and forward–backward operator

Tτ (V,W),Kτ (V,W),Fτ (V,W) Galerkin projections onto finite-dimensional subspaces

Tτ (ψ, φ), Kτ (ψ, φ), Fτ (ψ, φ) Matrix representations of Galerkin projections,

Ψ (·) Transformed data matrix

C(·), A(·, ·) Covariance and cross-covariance matrices

Gr ,Br Spectral subspace and associated coefficient vector space

T =

r
T(1)

z
⊗ . . .⊗

r
T(p)

z
Tensor train of order p

T|k = T|nk+1,...,np
n1,...,nk Mode-k unfolding of T

Ψ (·) Transformed data tensor

C(·),A(·, ·) Covariance and cross-covariance tensors

·̂ Data-driven estimates

Previous work on low-rank approximation in the context of Koopman operator modeling includes [29,33–36]. Importantly, it was
hown in [33] that the matrices required for data-driven approximations to the Perron–Frobenius or Koopman operator based on a
roduct basis can directly be written in the canonical format. The resulting generalized eigenvalue problems can be converted to TT
ormat and then solved with the aid of power iteration methods. This, however, requires repeated rank reductions and appropriate
stimates of the eigenvalues so that power iteration converges. In [29,35], a TT representation of the data tensor, which contains the
valuations of a product basis at all data points, was introduced, accompanied by a method to compute an approximate singular value
ecomposition (global SVD) of the data tensor.
In this study, we build on these results to derive and analyze new tensor decomposition methods for Koopman operator approxima-

ion. Our methods proceed by first computing a (compressed) representation of the data tensor. Subsequently, a tensor network needs
o be contracted to arrive at a reduced matrix approximation for the Koopman operator. Importantly, the calculation or inversion of
ramian matrices is entirely avoided. The detailed contributions of our study are as follows:

• First, we present a multi-linear version of the AMUSE algorithm [37] for Koopman approximation, which we call AMUSEt. This
method uses the global SVD to compute an approximate multi-linear singular value decomposition of the data tensor. By
contraction of an appropriate tensor network, a matrix representation of the Koopman operator can then be obtained.

• Second, we analyze AMUSEt by showing that the final matrix approximation is indeed the data-driven representation of the
Koopman operator on a data-dependent, finite-dimensional subspace. We establish convergence of this representation in the limit
of infinite data.

• Third, we present an alternative tensor train decomposition of the data tensor corresponding to a product basis. It is based on a
method outlined in [38], which provides a higher-order CUR decomposition. A detailed description of the latter method’s algorithmic
realization, including several enhancements, is provided.

• Finally, we demonstrate the capabilities of the proposed methods by analyzing benchmark molecular dynamics and fluid dynamics
data sets.

he remainder of this work is structured as follows: In Section 2, we introduce the required notation and concepts regarding evolution
perators, their numerical approximation, tensor decompositions, and the application of tensor methods in the context of evolution
perators. The AMUSEt algorithm is introduced in Section 3, while the novel HOCUR-based algorithm is presented in Section 4. The
heoretical analysis of AMUSEt follows in Section 5, numerical results for benchmark problems are then shown in Section 6. Concluding
emarks and open problems follow in Section 7.

. Basic concepts

We first recapitulate basic concepts from dynamical systems theory, especially evolution operators and their Galerkin approximation
n Section 2.1. Afterwards, we change topics and discuss low-rank approximations of tensors in the tensor train format and how these
oncepts can be applied in the context of dynamical systems in Section 2.2. Table 1 summarizes the notation that is used throughout
he paper.

.1. Evolution operators and their approximation

.1.1. Evolution operators
The main concern of this study is the analysis of dynamical systems using evolution operators. Let Xt ∈ Rd be a deterministic or

tochastic dynamical system. For a positive lag time τ , assume that the densities of X at times t = 0 and t = τ are given by ρ and ρ ,
t 0 1
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espectively. The Perron–Frobenius operator Tτ : L2ρ0 → L2ρ1 , and its adjoint, the Koopman operator Kτ = T ∗
τ : L

2
ρ1

→ L2ρ0 , are defined by

Tτ f (y) =
1

ρ1(y)

∫
f (x)ρ0(x)pτ (x, y) dx, Kτ f (x) =

∫
pτ (x, y)f (y) dy,

here pτ is the stochastic transition kernel associated with the process Xt , see [1–5] for more details. If the process is stationary and
dmits an invariant distribution µ, it is convenient to choose ρ0 = ρ1 = µ. In particular, if the dynamics Xt are reversible with respect

to µ, the operator Tτ is self-adjoint on L2µ, and hence identical to Kτ . For non-reversible or time-dependent systems, it is in general
more appropriate to consider the forward–backward operator

Fτ = T ∗

τ Tτ : L2ρ0 → L2ρ0 .

One is often interested in certain spectral components of these operators, especially those which are largest in magnitude (also called
leading/dominant eigenvalues), as they can be used to determine dynamically long-lived structures. For stationary systems, leading
eigenpairs of Kτ or Tτ (which will be close to one in absolute value), can be used for metastability analysis, especially if the system
is reversible [39]. If the system is non-stationary, leading singular values and functions of the Koopman operator are typically used
instead. If they exist, left singular functions are automatically eigenfunctions of Fτ , with eigenvalue equal to the square of the singular
value. These functions can be used to determine finite-time coherent sets [6,7,13,40].

2.1.2. Galerkin projection and dimensionality reduction
For the purposes of numerical analysis, the linear operators above must be represented on finite-dimensional subspaces. To introduce

the notation, let H be a Hilbert space of functions on Rd with inner product ⟨·, ·⟩H. Let V be a finite-dimensional subspace of dimension
n, with a basis ψ = (ψ1, . . . , ψn)⊤. The orthogonal projector onto V is denoted by PV. Any function in V can be represented uniquely
by a vector of expansion coefficients with respect to ψ in Rn. More generally, any r-dimensional subspace F of V, spanned by functions
θ = (θ1, . . . , θr )⊤, is encoded by a matrix A ∈ Rn×r , the columns of which contain the expansion coefficients of θ with respect to the
basis ψ:

θ (x)⊤ = ψ(x)⊤A.

In this context, we will call the column space of A in Rn the coefficient vector space corresponding to F. Finally, the Gramian matrix of
a finite basis is denoted by

C(ψ) :=
(⟨
ψi, ψj

⟩
H

)
ij
.

Returning to the analysis of evolution operators, let finite-dimensional spaces V ⊂ L2ρ0 and W ⊂ L2ρ1 , with bases ψ = (ψ1, . . . , ψn)⊤

and φ = (φ1, . . . , φn)⊤, be given. We then consider the Galerkin projections

Kτ (V,W) = PVKtPW,

Tτ (V,W) = PWTtPV,

Fτ (V,W) = Kτ (V,W)Tτ (V,W).
(1)

The matrix representations of these operators with respect to the bases ψ and φ are given by

Kτ (ψ, φ) =
(
C(ψ)

)−1A(ψ, φ),

Tτ (ψ, φ) =
(
C(φ)

)−1A(ψ, φ)⊤,
Fτ (ψ, φ) = Kτ (ψ, φ)Tτ (ψ, φ),

(2)

where C(ψ) and C(φ) are the Gramians in L2ρ0 and L2ρ1 , respectively, and the matrix A(ψ, φ) satisfies

A(ψ, φ)ij = ⟨ψi,Kτφj⟩ρ0 = ⟨Tτψi, φj⟩ρ1 ,

see [5,8,14]. We will frequently use orthonormal bases to represent the operators introduced above. If η and ζ are orthonormal bases
for V and W, the corresponding matrix representations reduce to

Kτ (η, ζ ) = A(η, ζ ) = Tτ (η, ζ )⊤, Fτ (η, ζ ) = A(η, ζ )A(η, ζ )⊤.

We observe that the matrix representation Kτ (η, ζ ) = A(η, ζ ) of the projected Koopman operator for orthonormal basis sets serves as
a baseline model from which most relevant quantities can be calculated directly, such as eigenpairs in the stationary case, or singular
pairs and forward–backward eigenpairs in the non-stationary case. Therefore, representations of this type will be particularly interesting
in what follows. Arbitrary bases can always be transformed into orthonormal ones using spectral decompositions of the Gramians: If
C(ψ) = UψΣ2

ψU
⊤

ψ , C(φ) = UφΣ2
φU

⊤

φ , then we arrive at the following orthonormal bases (whitening transformation):

η(x)⊤ = ψ(x)⊤UψΣ−1
ψ , ζ (x)⊤ = φ(x)⊤UφΣ−1

φ .

By additionally truncating the spectral decompositions after their first r ≤ n components, reduced orthonormal bases η⊤
r =

ψ⊤(Uψ,rΣ−1
ψ,r ) and ζ

⊤
r = φ⊤(Uφ,rΣ−1

φ,r ) can be obtained. The Koopman matrix corresponding to these bases can be calculated according
to

Mτ ,r := Kτ (ηr , ζr ) = (Σ−1
ψ,rU

⊤

ψ,r )A(ψ, φ)(Uφ,rΣ
−1
φ,r ).

The matrix Mτ ,r is then typically used as an approximate representation of Kτ (V,W). Quantities of interest can be expressed with
respect to the full basis by means of the transformations (Uψ,rΣ−1

ψ,r ) and (Uφ,rΣ−1
φ,r ). For instance, if (σi, vi, wi) is a singular triplet of

Mτ ,r , then the corresponding singular functions can be expressed in the original bases by the coefficient vectors ξi = (Uψ,rΣ−1
ψ,r )vi and

χi = (Uφ,rΣ−1
φ,r )wi. However, it should be kept in mind that Mτ ,r really just represents the Koopman operator on the reduced subspaces

spanned by η , ζ , which will be analyzed in more detail in Section 5.
r r
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.1.3. Data-driven approximation
Usually, the integrals required for the matrices in (2) cannot be computed analytically, and are estimated from data instead. Assume

e have a pair of Rd-valued random variables x, y on a probability space (Ω,B,P) such that the joint distribution of (x, y) on Rd
×Rd

is ϑ(x, y) = ρ0(x)pτ (x, y). For Hilbert space-valued, ϑ-integrable functions f :Rd
× Rd

→ H, the strong law of large numbers [41] then
mplies that for almost surely any sequence of i.i.d. samples (xk, yk) ∈ Rd

× Rd, we have

lim
m→∞

1
m

m∑
k=1

f (xk, yk) = Eϑ [f ]. (3)

or such an i.i.d. sequence, we can assemble all pairs into data matrices X, Y ∈ Rd×m, where X = [x1, . . . , xm] and Y = [y1, . . . , ym].
For finite-dimensional subspaces V ⊂ L2ρ0 , W ⊂ L2ρ1 as above, we then define the transformed data matrices in Rn×m by

Ψ (X) =
[
ψ(x1) . . . ψ(xm)

]
and Φ(Y ) =

[
φ(y1) . . . φ(ym)

]
. (4)

These give rise to the following empirical estimates of the matrices C(ψ), C(φ), A(ψ, φ):

Ĉ(ψ) =
1
m
Ψ (X)Ψ (X)⊤, Ĉ(φ) =

1
m
Φ(Y )Φ(Y )⊤, Â(ψ, φ) =

1
m
Ψ (X)Φ(Y )⊤. (5)

ne of the central results of the Koopman approach is [5,8,14]:

roposition 1. If (3) holds, then almost surely

C(ψ) = lim
m→∞

Ĉ(ψ), C(φ) = lim
m→∞

Ĉ(φ), A(ψ, φ) = lim
m→∞

Â(ψ, φ). (6)

emark 1.

(i) A standard way to generate the samples (xk, yk) is to draw xk i.i.d. from ρ0, and yk is then obtained by integrating the dynamics
Xt over time τ , starting from xk.

(ii) By ergodic theory [41], the conclusions of Proposition 1 also hold if Xt is stationary with unique invariant density µ = ρ0 = ρ1. In
this case, xk is chosen as the kth step of any discretized trajectory of Xt , and yk is obtained as the kth step of the same trajectory
shifted by τ .

By means of the empirical estimates (5), we can obtain data-based projections K̂τ (V,W), T̂τ (V,W) and F̂τ (V,W) of the evolution
operators. Their matrix representations with respect to ψ, φ are the same as (2), only using empirical estimates, i.e.,

K̂τ (ψ, φ) =
(̂
C(ψ)

)−1̂A(ψ, φ),

T̂τ (ψ, φ) =
(̂
C(φ)

)−1̂A(ψ, φ)⊤,

F̂τ (ψ, φ) = K̂τ (ψ, φ )̂Tτ (ψ, φ).

(7)

Just as we did for the analytical Galerkin projections in Section 2.1.2, we can use empirically orthonormal bases η̂, ζ̂ (i.e., Ĉ (̂η) = Id
and Ĉ (̂ζ ) = Id) to simplify these matrix approximations, obtaining the empirical Koopman matrix as K̂τ (̂η, ζ̂ ) = Â(̂η, ζ̂ ). Spectral
decompositions of the empirical Gramians can be used to find orthonormal bases just as described above, and truncations of the spectral
decompositions lead to appropriate reduced matrices M̂τ ,r . The data-driven matrices just introduced form the basis for a number of
well-known numerical methods to analyze evolution operators. In particular, extended dynamic mode decomposition (EDMD) [5,8] and the
variational approach to conformational dynamics (VAC) [9,10] apply to the stationary case, while canonical correlation analysis [12,13]
has been formulated for the non-stationary setting. See also [14] for an overview of the nomenclature.

2.1.4. The AMUSE algorithm
In the data-driven setting, calculation of the empirical Gramians can be entirely avoided. Let rank-r singular value decompositions

(SVDs) of the transformed data matrices be given by

Ψ (X) = ÛX,rΣ̂X,r V̂⊤

X,r + ÊX,r , Φ(Y ) = ÛY ,rΣ̂Y ,r V̂⊤

Y ,r + ÊY ,r ,

where ÊX,r , ÊY ,r are the errors resulting from truncation of the SVD at rank r ≤ n. Because of (5), the basis sets η̂⊤
r =

√
mψ⊤(ÛX,rΣ̂

−1
X,r ),

ζ⊤
r =

√
mφ⊤(ÛY ,rΣ̂

−1
Y ,r ) are empirically orthonormal. Moreover, their empirical Koopman matrix can be obtained directly from the

bove SVDs, by observing that

M̂τ ,r = Â(̂ηr , ζ̂r ) = (
√
mΣ̂−1

X,r Û
⊤

X,r )
1
m
Ψ (X)Φ(Y )⊤

√
m(ÛY ,rΣ̂

−1
Y ,r ) = V̂⊤

X,r V̂Y ,r .

Quantities of interest, such as singular triplets, can be calculated directly from M̂τ ,r . The method is summarized in Algorithm 1 [11,14,37].
It should be kept in mind, though, that M̂τ ,r only serves as empirical approximation of the Koopman operator on the subspaces spanned
by η̂r , ζ̂r . Further below, these spaces will be analyzed in more detail.

If the subspaces V, W are identical, it is often desirable to use a single reduced basis in Algorithm 1. The resulting modification using
just an SVD of Ψ (X) is shown in Algorithm 2. If the process Xt is stationary (ρ0 = ρ1 = µ), then the reduced subspaces based on SVDs
of Ψ (X) and Ψ (Y ) converge to the same limit with infinite data, hence Algorithms 1 and 2 are asymptotically equivalent. For finite
data however, their outputs will generally be different. We also note that the computation of the reduced matrix in Algorithm 2 does
not break down to a single matrix product, which will be important when comparing the tensor-based versions of both algorithms in
Section 3.
4
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Input: transformed data matrices Ψ (X) and Φ(Y )
Output: reduced Koopman matrix M̂τ ,r = K̂τ (̂ηr , ζ̂r ),

approximate singular values σ̂i and singular vectors ξ̂i, χ̂i of K̂τ (V,W).

1: Compute reduced SVDs of Ψ (X) and Φ(Y ), i.e., Ψ (X) ≈ ÛX,rΣ̂X,r V̂⊤

X,r and Φ(Y ) ≈ ÛY ,rΣ̂Y ,r V̂⊤

Y ,r .

2: Compute M̂τ ,r = V̂⊤

X,r V̂Y ,r .
3: Compute singular values σ̂i of M̂τ ,r , and left and right singular vectors v̂i, ŵi.
4: Express singular vectors with respect to original bases: ξ̂i = ÛX,r Σ̂

−1
X,r v̂i, χ̂i = ÛY ,r Σ̂

−1
Y ,r ŵi.

Algorithm 2: Single Basis AMUSE.

Input: transformed data matrices Ψ (X) and Ψ (Y )
Output: reduced Koopman matrix M̂τ ,r = K̂τ (̂ηr , η̂r ),

approximate singular triplets (σ̂i, ξ̂i, χ̂i) or eigenpairs (̂λi, ξ̂i) of K̂τ (V,V).

1: Compute reduced SVD of Ψ (X), i.e., Ψ (X) ≈ ÛX,rΣ̂X,r V̂⊤

X,r .
2: Compute M̂τ ,r = V̂⊤

X,rΨ (Y )⊤ÛX,rΣ̂
−1
X,r .

3: Compute singular triplets (σ̂i, v̂i, ŵi) or eigenpairs (̂λi, ŵi) of M̂τ ,r .
4: Express singular vectors or eigenvectors w.r.t. original basis as in Algorithm 1.

Fig. 1. Graphical representation of a tensor train: A core is depicted by a circle with different arms indicating the modes of the tensor and the rank indices. The
irst and the last TT core are regarded as matrices due to the fact that r0 = rp = 1.

.2. Low-rank tensor representations

Tensors are multi-dimensional arrays T ∈ RN , where N = n1 × · · ·× np. Here, p is called the order of a tensor, while the dimensions
f the elementary vector spaces (the so-called modes) are nk, k = 1, . . . , p. Tensor entries are sometimes represented by multi-
ndices i = (i1, . . . , ip) with ik ∈ {1, . . . , nk}, i.e., Ti = Ti1,...,ip . The single-index representation of the multi-index i is denoted by
i ∈ {1, . . . ,

∏p
k=1 nk}. Conversely, the multi-index representation of the single-index i ∈ N is represented by i. The tensor product

s denoted by ⊗. We use bold capital letters (T,U, etc.) to denote tensors, capital letters (U, V , etc.) for matrices, and vectors are
epresented by lower case letters (x, xk, etc.). For 1 ≤ k ≤ p − 1, the mode-k unfolding of the tensor T is the matrix

T|nk+1,...,np
n1,...,nk ∈ R(n1·...·nk)×(nk+1·...·np).

In short, we use the notation

T|k= T|nk+1,...,np
n1,...,nk

if the modes of T are clear.

2.2.1. Tensor train format
We start by introducing the tensor train (TT) format, where a high-dimensional tensor is represented by the contraction of multiple

low-dimensional tensors [23,24].

Definition 1. A tensor T ∈ RN is said to be in the TT format if

T =

r0∑
l0=1

· · ·

rp∑
lp=1

p⨂
k=1

T(k)
lk−1,:,lk

=

r0∑
l0=1

· · ·

rp∑
lp=1

T(1)
l0,:,l1

⊗ · · · ⊗ T(p)
lp−1,:,lp

.

The tensors T(k)
∈ Rrk−1×nk×rk of order 3 are called TT cores and the numbers rk are called TT ranks. It holds that r0 = rp = 1 and rk ≥ 1

for k = 1, . . . , p − 1.

The TT ranks r0, . . . , rp have a strong influence on the capability of representing a given tensor as a tensor train and determine
the storage consumption of a tensor in the TT format. Fig. 1 shows the graphical representation of a tensor train, which is also called
Penrose notation, see [42].
5
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We also represent TT cores as two-dimensional arrays containing vectors as elements. For a given tensor train T ∈ RN with cores
T(k)

∈ Rrk−1×nk×rk , a single core is written as

r
T(k)

z
=

u

wwwwwww
v

T(k)
1,:,1 · · · T(k)

1,:,rk

...
. . .

...

T(k)
rk−1,:,1

· · · T(k)
rk−1,:,rk

}

�������
~

.

e then use the notation T =

r
T(1)

z
⊗ · · · ⊗

r
T(p)

z
for representing tensor trains T, cf. [27,29,43]. This notation can be regarded as a

eneralization of the standard matrix multiplication. The difference is that we here compute the tensor products of the corresponding
lements – which are vectors instead of scalar values – and then sum over the columns and rows, respectively. A core of a tensor train
s left-orthonormal if(

T(k)
|
rk
rk−1,nk

)⊤
·
(
T(k)

|
rk
rk−1,nk

)
= Id ∈ Rrk×rk .

.2.2. Basis decompositions
Within the context of data-driven approximation of evolution operators, see Section 2.1.3, tensors arise if trial spaces are chosen

s tensor products of elementary function spaces. We consider a data matrix X ∈ Rd×m originating from a stochastic process Xt , and
set of basis functions ψ1, . . . , ψp with ψk:Rd

→ Rnk where nk ∈ N for k = 1, . . . , p. Let Vk
= span{ψk,1, . . . , ψk,nk} denote the

k-dimensional subspaces spanned by the elementary basis functions ψk,1, . . . , ψk,nk ∈ L2ρ0 . We consider the Galerkin projection (1) on
he tensor product V := V1

⊗ · · · ⊗ Vp
⊂ L2ρ0 , which is a subspace of dimension at most n1 · . . . · np. Equivalently, choosing elementary

asis functions in L2ρ1 for a data matrix Y yields a tensor space W ⊂ L2ρ1 .
The tensor-based counterparts of the transformed data matrices given in (4) are denoted by Ψ (X) and Φ(Y ), respectively. These

ransformed data tensors can then be used to obtain empirical estimates of the Galerkin tensors for V,W:

Ĉ(Ψ ) =
1
m
Ψ (X)Ψ (X)⊤, Ĉ(Φ) =

1
m
Φ(Y )Φ(Y )⊤, Â(Ψ ,Φ) =

1
m
Ψ (X)Φ(Y )⊤,

where the transposes of Ψ (X) and Φ(Y ) result from index permutations such that Ψ (X)⊤,Φ(Y )⊤ ∈ Rm×n1×···×np . The multiplication
above then denotes the contraction of the last mode of the first tensor with the first mode of the second tensor. As we have shown
in [29], the tensor train format can be used to represent transformed data tensors. In what follows, we will focus on the construction
of Ψ (X), the case for Φ(Y ) is analogous. We start by considering rank-one tensors of the form

Ψ (x) = ψ1(x) ⊗ · · · ⊗ ψp(x) =

⎡⎢⎣ψ1,1(x)
...

ψ1,n1 (x)

⎤⎥⎦ ⊗ · · · ⊗

⎡⎢⎣ψp,1(x)
...

ψp,np (x)

⎤⎥⎦ ∈ Rn1×n2×···×np . (8)

Note that the so-called coordinate-major and function-major basis decompositions, introduced in [29], are special cases of the more
general decomposition given in (8). The transformed data tensor Ψ (X) ∈ Rn1×···×np×m is then given by adding the rank-one
decompositions (8) for all vectors x1, . . . , xm and taking the tensor product with an additional unit vector. The result is the following
TT decomposition:

Ψ (X) =

m∑
k=1

Ψ (xk) ⊗ ek

=

m∑
k=1

ψ1(xk) ⊗ · · · ⊗ ψp(xk) ⊗ ek

=
q
ψ1(x1) · · · ψ1(xm)

y
⊗

u

ww
v

ψ2(x1) 0
. . .

0 ψ2(xm)

}

��
~ ⊗ · · · ⊗

u

ww
v

ψp(x1) 0
. . .

0 ψp(xm)

}

��
~ ⊗

u

ww
v

e1
...

em

}

��
~

=:

r
Ψ (1)(X)

z
⊗

r
Ψ (2)(X)

z
⊗ · · · ⊗

r
Ψ (p)(X)

z
⊗

r
Ψ (p+1)(X)

z
,

(9)

where ek, k = 1, . . . ,m, denote the unit vectors of the standard basis in the m-dimensional Euclidean space. The matrix-based
counterpart of Ψ (X), see (4), would be given by the mode-p unfolding

Ψ (X) = Ψ (X)|p= Ψ (X)|mn1,...,np , (10)

that is, modes n1, . . . , np represent row indices of the unfolding, and mode m is the column index.1

1 The relation (10) would still be satisfied if the position of the unit vectors in (9) is changed. Moreover, contracting the TT core of unit vectors with any other
ore results in the so-called block TT format [44]. For the application of HOCUR and HOSVD, however, we stick to the decomposition scheme given in (9).
6
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t

Fig. 2. Global SVD in TT format: Global SVD of a transformed data tensor Ψ (X) with components ÛX,r (half-filled circles in blue), Σ̂X,r (orange circle), and V̂X,r
(half-filled circle in green). The first p modes depict the row indices while the last mode depicts the column index. We transpose the last TT core in order to account
for the different row and column dimensions of the transformed data matrices, cf. Section 2.2.2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

2.2.3. Global SVD
In order to apply the Algorithms 1 and 2 to tensor product bases, SVDs of the mode-p unfoldings of Ψ (X) and Φ(Y ) are required.

A multi-linear analogue of the standard SVD was presented for the tensor train format in [35]. For a given tensor train Ψ (X), the
method provides an orthonormal, tensor-train structured segment ÛX,r ∈ Rn1×···×np×r , a diagonal coupling matrix Σ̂X,r ∈ Rr×r , and
an orthonormal matrix V̂X,r ∈ Rm×r representing the last core. The dimension r is the TT rank between the two last cores. Just like a
standard SVD of a matrix, ÛX,r , Σ̂X,r , and V̂X,r then satisfy the following properties:

(i) Ψ (X) = ÛX,rΣ̂X,r V̂⊤

X,r ,
(ii) (̂UX,r |p)⊤ÛX,r |p= V̂⊤

X,r V̂X,r = Id ∈ Rr×r ,
(iii) Σ̂X,r ∈ Rr×r is a diagonal matrix.

Algorithm 3: Global SVD.

Input: transformed data tensor Ψ (X) ∈ Rn1×...×np×m in TT format
Output: global SVD of Ψ (X) in the form of ÛX,rΣ̂X,r V̂⊤

X,r

1: for k = 1, . . . , p − 1 do
2: Compute (truncated) SVD of Ψ (k)(X)|2, i.e., Ψ

(k)(X)|2= UΣV⊤
+ E, Σ ∈ Rrk×rk .

3: Set Ψ (k)(X) to a reshaped version of U .
4: Set Ψ (k+1)(X) to a reshaped version of ΣV⊤Ψ (k+1)(X)|1.
5: Compute (truncated) SVD of Ψ (p)(X)|2, i.e., Ψ

(p)(X)|2= UΣV⊤
+ E, Σ ∈ Rrp×rp .

6: Set Ψ (p)(X) to a reshaped version of U .
7: Set Ψ (p+1)(X) to V⊤.
8: Define r = rp, ÛX,r =

r
Ψ (1)(X)

z
⊗ . . .⊗

r
Ψ (p)(X)

z
, Σ̂X,r = Σ , and V̂X,r = V .

The method described in Algorithm 3 proceeds as follows: Similarly to the TT-SVD algorithm proposed in [24], we left-orthonormalize
he TT cores Ψ (1)(X), . . . ,Ψ (p−1)(X) using (truncated) SVDs. Then, we decompose the TT core Ψ (p)(X), but this time retain the diagonal
matrix containing the singular values and only shift the right-orthonormal matrix to the last core. This provides the components of
the global SVD as shown in Fig. 2. Note that we do not require any right-orthonormalization of the last core as stated in [35] since
Ψ (p+1)(X) is simply a reshaped identity matrix.

3. AMUSE on tensors

In this section, we combine the ideas of the AMUSE algorithm developed in Section 2.1.4 with the global SVD for tensor-structured
bases. Recall that the idea of AMUSE was to use truncated SVDs of the data matrices in order to determine empirically orthonormal
bases of reduced subspaces of the trial spaces V,W. We have seen that a matrix representation of the empirical Koopman operator on
these spaces can then be found without computing or inverting any of the Gramian matrices. If V and W are tensor product spaces,
this procedure rapidly becomes infeasible, as we would have to calculate SVDs of the mode-p unfoldings of Ψ (X), Φ(Y ), which grow
exponentially in size. However, we have seen in Section 2.2.3 that an approximation to these SVDs can be obtained by the multi-linear
global SVD algorithm.

In the following section, we derive a corresponding multi-linear AMUSE algorithm, which we will call AMUSEt (AMUSE on tensors).
This method only requires operations on individual cores of the TT representation (9) and the contraction of a tensor network. The
analysis of this method will then be presented in Section 5.

3.1. The AMUSEt algorithm

Suppose we have given TT representations of the transformed data tensors Ψ (X) and Φ(Y ). In order to construct the reduced matrix
M̂τ ,r in Algorithm 1, we first compute global SVDs of Ψ (X) and Φ(Y ), i.e.,

Ψ (X) = Û Σ̂ V̂⊤ and Φ(Y ) = Û Σ̂ V̂⊤ ,
X,r X,r X,r Y ,r Y ,r Y ,r

7
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Fig. 3. Graphical representation of the reduced matrix: Given Ψ (X) (in form of a global SVD) and Ψ (Y ), the reduced matrix M̂τ ,r ∈ Rr×r is computed by contracting
he above tensor network. Half-filled circles in blue depict the cores of ÛX,r , Σ̂X,r and Σ̂−1

X,r are represented by orange and red circles, respectively, and the half-filled
ircle in green depicts the matrix V̂X,r of the global SVD. Since we here do not assume any further properties on Ψ (Y ), we simply represent its TT cores by gray
ircles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Construction of transformed data tensors: The tensor trains Ψ (X) and Ψ (Y ) are extracted from the left-orthonormalized tensor train Ψ (Z). Additionally, Ψ (X)
s represented by its global SVD. Again, the cores of ÛX,r (as well as ÛX,r ) are represented by half-filled circles in blue, Σ̂X,r by an orange circle, and V̂X,r by a
alf-filled green circle. The last cores of Ψ (Z) and Ψ (Y ) are depicted by a gray and a white circle, respectively. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

y applying Algorithm 3. Analogously to the matrix case, the reduced matrix can simply be written as M̂τ ,r = V̂⊤

X,r V̂Y ,r , see line 2 of
Algorithm 1. In what follows, we therefore focus on single basis AMUSEt. The construction of M̂τ ,r as in line 2 of Algorithm 2 leads to
the tensor network shown in Fig. 3. Note that here only the contractions of the TT cores of ÛX,r and of Σ̂X,r with its inverse cancel out.

The complexity of AMUSEt is mainly determined by the computational cost of the global SVD, which can be estimated as
O(pmin{rnm2, r2n2m}), where n is the maximum mode size. However, the complexity of AMUSEt can be reduced in many cases.
Oftentimes, we consider snapshot matrices X, Y ∈ Rd×m, which are extracted from a trajectory data matrix Z ∈ Rd×m̃, m̃ > m, and
share a large number (i.e., close to m) of common snapshot vectors. Instead of constructing the transformed data tensors separately,
we can construct the TT decomposition of Ψ (Z) and then simply restrict the last TT core to the respective time steps in order to obtain
the representations for Ψ (X) and Ψ (Y ). That is, given the data matrix Z , and index sets IX , IY such that X = Z:,IX and Y = Z:,IY , we
directly form Ψ (Z) according to (9):

Ψ (Z) =

r
Ψ (1)(Z)

z
⊗

r
Ψ (2)(Z)

z
⊗ · · · ⊗

r
Ψ (p)(Z)

z
⊗

r
Ψ (p+1)(Z)

z
.

Then, the tensor trains Ψ (X) and Ψ (Y ) are given by

Ψ (X) =

r
Ψ (1)(Z)

z
⊗

r
Ψ (2)(Z)

z
⊗ · · · ⊗

r
Ψ (p)(Z)

z
⊗

r(
Ψ (p+1)(Z)

)
:,IX ,1

z

Ψ (Y ) =

r
Ψ (1)(Z)

z
⊗

r
Ψ (2)(Z)

z
⊗ · · · ⊗

r
Ψ (p)(Z)

z
⊗

r(
Ψ (p+1)(Z)

)
:,IY ,1

z
.

In order to arrive at a global SVD of Ψ (X), we first left-orthonormalize the tensor train Ψ (Z), from which Ψ (X) and Ψ (Y ) can still
be recovered by restricting the last core to the corresponding indices. Additionally, we compute a rank-r SVD of only the last core of
Ψ (X), thereby completing the global SVD of Ψ (X) in the form ÛX,r ÛX,rΣ̂X,r V̂⊤

X,r . These transformations are visualized in Fig. 4.
By construction, Ψ (X) and Ψ (Y ) share the same segment ÛX,r . Since the cores of ÛX,r (as well as ÛX,r ) are left-orthonormal, most of

the contractions cancel out, and only four matrices remain, namely V̂X,r , M̂Y ,r , ÛX,r , and Σ̂−1
X,r . Thus, the reduced matrix is then simply

given by

M̂τ ,r = Σ̂−1
X,r Û

⊤

X,r Û
⊤

X,rΨ (X)Ψ (Y )⊤ÛX,r ÛX,rΣ̂
−1
X,r = V̂⊤

X,rM̂
⊤

Y ,r ÛX,rΣ̂
−1
X,r . (11)

Finally, let us discuss the expression of singular vectors or eigenvectors computed from M̂τ ,r with respect to the full tensor product
basis. For instance, given the q leading eigenvectors of the reduced matrix M̂τ ,r in form of a matrix Ŵ = [ŵ1, . . . , ŵq], the approximate
eigentensors of K̂τ (V,V) can be expressed as a tensor train Ξ with Ξ = ÛX,r ÛX,rΣ̂

−1
X,rŴ , see line 2 of Algorithm 2. The evaluations of

the associated eigenfunctions at all snapshots are then given by the matrix Ξ⊤Ψ (X), see [14]. The corresponding tensor network also
breaks down to a simple matrix product, as is shown in Fig. 5.

Remark 2. Note that we do not need the cores of ÛX,r after the orthonormalization procedure if we are only interested in the
approximated eigenfunctions. For both the construction of the reduced matrix M̂τ ,r as well as the eigenfunction evaluations Ξ⊤Ψ (X),
see Fig. 5, the TT segment Û is not required due to its orthonormality. This significantly reduces the storage consumption since we
X,r

8
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Fig. 5. Graphical representation of the eigentensors and eigenfunctions: The tensor train Ξ is built by the contraction of ÛX,r , ÛX,r , Σ̂−1
X,r , and Ŵ (depicted by the

quare). The matrix Ξ⊤Ψ (X) comprising the evaluations of the eigenfunctions at the given snapshots is constructed by multiplying the tensors Ψ (X) and Ξ . Similar
o the construction of the reduced matrix only two cores remain since the orthonormal cores cancel out and Σ̂X,r is multiplied by its inverse.

Fig. 6. CUR decomposition: The matrix on the left-hand side is approximated by the matrix product C · U−1
· R, where C (blue lines) is a column subset, R (green

ines) is a row subset, and U (red crosses) is the intersection matrix. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

re able to construct the left-orthonormalized version of Ψ (X) step by step, i.e., we only need to store two TT cores in memory at the
ame time.

. HOCUR-based approach

In practice, the direct construction of transformed data tensors as described in Section 2.2.2 may be infeasible due to a large number
f basis functions or snapshots. Thus, an alternative isolation technique for the modes of Ψ (X) and Φ(Y ) has to be used in order to
pply AMUSEt. Our idea to circumvent this problem is a combination of different techniques from [38,45,46], specifically adapted to
ransformed data tensors as described in Section 2.2.2. Based on so-called CUR decompositions, i.e., representing a matrix in terms
f appropriate row and column subsets, we propose an iterative technique in Section 4.2. The aim is to construct a low-rank TT
ecomposition of the transformed data tensor without storing the complete representation of Ψ (X) as given in (9).

.1. Higher-order CUR decomposition

For a matrix M ∈ Rm×n, a CUR decomposition consists of index sets I, J , as well as submatrices C = M:,J , U = MI,J , and R = MI,:,
uch that M ≈ C · U−1

· R, see Fig. 6.
There are different methods to find optimal sets of rows and columns, cf. [47]. An important subproblem is the following: given

set of column indices J = {j1, . . . , jr} with r ≤ min(m, n) (and M:,J having full column rank), find an optimal subset of row indices
= {i1, . . . , ir}. This NP-hard problem can be approximately solved by applying the maximum-volume principle to M:,J , so that the

nfinity norm of M − M:,J · M−1
I,J · MI,: is minimized over I , see [45,46]. We refer to this algorithm as Maxvol from now on.

As described in [38], the CUR decomposition can be generalized to a tensor if its mode-k unfoldings are successively decomposed
sing CURs. This method presents an alternative to the decomposition (9) if applied to the transformed data tensor Ψ (X). However, the
rocedure requires pre-defined row and column subsets for each unfolding. The authors of [38] also suggested an iterative algorithm to
ircumvent this problem: after initializing row and column subsets in some way, the method alternates between updating the column
ubsets while all row sets are fixed, and vice versa. This algorithm is the basis of the method we will present in Section 4.2.

.2. HOCUR for transformed data tensors

As suggested in [38], Algorithm 4 successively updates the row sets of the unfolded residual tensors during a forward loop, while
ll column sets are fixed. Then, column sets are updated during a backward loop, with all row sets fixed, and the entire procedure is
epeated until convergence. The key insight, used in lines 5–9 and 13–14, is that each update only operates on a small subtensor which
s easily evaluated. Assume we are given a row set I = Iq = {i1, . . . , irq} of multi-indices comprising modes n1, . . . , nq, and a column
set J = Jq+2 = {j1, . . . , js} of multi-indices comprising modes nq+2, . . . , np,m:

i1, . . . , irq ∈ {1, . . . , n1} × · · · × {1, . . . , nq},

j1, . . . , js ∈ {1, . . . , nq+2} × · · · × {1, . . . , np} × {1, . . . ,m}.

hen, a new extended row set comprising the first q + 1 modes

i , . . . , i ∈ {1, . . . , n } × · · · × {1, . . . , n },
1 rq+1 1 q+1

9
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an be obtained by applying Algorithm Maxvol to the submatrix Ψ (X)|I,J ∈ Rrq·nq+1×s, given by

Ψ (X)|I,J =

⎡⎢⎣Ψ (X)i1,:,j1 · · · Ψ (X)i1,:,js
...

. . .
...

Ψ (X)irq ,:,j1 · · · Ψ (X)irq ,:,js

⎤⎥⎦ . (12)

his matrix is easily set up using basis function evaluations. More precisely, given multi-indices i = (i1, . . . , iq) ∈ I and j =

iq+2, . . . , ip, k) ∈ J, entries Ψ (X)i,:,j of Ψ (X)|I,J are given by

Ψ (X)i,:,j = Ψ (X)i1,...,iq,:,iq+2,...ip,k

= ψ1,i1 (xk) · . . . · ψq,iq (xk)  
∈R

·ψq+1(xk)  
∈Rnq+1

·ψq+2,iq+2 (xk) · . . . · ψp,ip (xk)  
∈R

.

ote that the last entry of the column index j determines the snapshot xk where the product is evaluated.

lgorithm 4: Higher-order CUR decomposition.

Input: data matrix X = [x1, . . . , xm] ∈ Rd×m, basis functions ψi,ji , i = 1, . . . , p,
ji = 1, . . . , ni, maximum ranks r1, . . . , rp with rq ≤ nq+1 · rq+1,
number of iterations N , multiplier α > 1

Output: TT approximation of the transformed data tensor Ψ (X)

1: Set np+1 = m, r0 = rp+1 = 1, and I0 = {∅}.
2: Define initial multi-index column sets J2, . . . , Jp+2.
3: for k = 1, . . . ,N do
4: for l = 1, . . . , p do (First half sweep)
5: Extract submatrix M = Ψ (X)|Il−1,Jl+1 , see (12).
6: if k = 1 then
7: Find set of linearly independent columns J of M with |J| ≤ rl.
8: Set M to M:,J and rl to |J|.
9: Apply Algorithm Maxvol to M to extract row set I .
0: Compute multi-index row set Il from Il−1 and I , see (13).
1: Define core Ψ (X)(l) as M · M−1

I,: reshaped as Rrl−1×nl×rl .
12: for l = p + 1, . . . , 2 do (Second half sweep)
13: Extract submatrix M = Ψ (X)|Il−1,Jl+1 and reshape as Rrl−1×nl·rl .
14: Apply Algorithm Maxvol to M⊤ to extract column set J and set rl−1 = |J|.
15: Compute multi-index column set Jl from J and Jl+1.
16: Define core Ψ (X)(l) as M−1

:,J · M reshaped as Rrl−1×nl×rl .

17: Define first core Ψ (X)(1) as Ψ (X)|I0,J2 reshaped as R1×n1×r1 .

Let us elaborate on a few more details of Algorithm 4. First, note that multi-index sets for the construction of the submatrices Ψ (X)|I,J
re nested sets by construction. In line 10, after each application of Algorithm Maxvol, the resulting single-index set I = {i1, . . . , irq+1}

eeds to be converted into a multi-index row set for modes n1, . . . , nq+1. Given a multi-index row set Iq = {i1, . . . , irq} as above, each
ow of Ψ (X)|Iq,Jq+2 can naturally be associated with a multi-index (k1, k2) ∈ {1, . . . , rq}×{1, . . . , nq+1}. Hence, we map each single-index
k ∈ I to a multi-index ik = (ik,1, ik,2) in {1, . . . , rq} × {1, . . . , nq+1}, and then define the extended multi-index row set

Iq+1 = {(ii1,1 , i1,2), . . . , (iirq+1,1
, irq+1,2

)}. (13)

olumn sets are updated analogously in line 15 of Algorithm 4.
Second, the algorithm requires initial column sets which are generated in line 2. While it was suggested in [38] to pick these columns

t random, we build them up recursively to ensure the column sets are also nested. Starting from Jp+2 = {∅}, column set Jq is obtained
by simply selecting the first min(α ·rq, nq+1 ·rq+1) indices out of the index set {1, . . . , nq+1 ·rq+1}, and then joining them with multi-index
olumn set Jq+1 as described above in (13). In practice, we found it helpful to select a rather large number of columns at this point, as
hese initial columns would often be highly redundant. The parameter α can be tuned to ensure enough columns are selected during
he initialization stage.

Third, we need to find index sets of linearly independent columns of the matrices Ψ (X)|I,J during the first iteration, see line 7. This
can again be done by applying QR decompositions with column pivoting. And finally, the cores of the TT approximation of Ψ (X) are
updated in lines 11 and 16, by multiplication of parts of the determined CUR decomposition. In the notation used in Section 4, the
updated cores are given by tensor foldings of C · U−1 and U−1

· R, respectively.

. Analysis of AMUSE and AMUSEt

The goal of this section is to show that AMUSEt as introduced in Section 3.1 produces an empirical matrix representation of the
oopman operator on data-dependent subspaces of the tensor spaces V,W, and to establish the convergence of this representation in

the limit of infinite data. We first investigate the standard case in Section 5.1. We define the spectral subspaces and their empirical
counterparts. If carried out at fixed prescribed SVD rank r , the standard AMUSE algorithm amounts to approximating the Koopman
10
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perator on empirical spectral subspaces. Convergence of these spaces and the corresponding Koopman operator representation is then
stablished. This analysis can be carried over to the tensor case. To this end, we first provide a multi-linear analogue of (empirical)
pectral subspaces in Section 5.2, and also establish convergence in the limit of infinite data. In Section 5.3, we then show that, analogous
o the standard AMUSE algorithm, AMUSEt is indeed the algorithmic framework to compute projections of evolution operators on
ulti-linear spectral subspaces.
In what follows, the space of bounded linear operators on a Hilbert space H, equipped with the standard operator norm, is denoted

by L(H). The orthogonal projector onto a finite-dimensional subspace V is labeled PV. The distance between subspaces V and W of the
ame dimension n is given by

d(V,W) = sup
v∈V,∥v∥=1

inf
w∈W

∥w − v∥ = ∥(Id − PW)PV∥L(H) = ∥PV − PW∥L(H).

inally, consider the situation that V is a finite-dimensional Hilbert space of functions on Rd, and xk, k ∈ N, is a sequence of Rd-valued
andom variables such that the first equation in (6) holds true almost surely. Then for m large enough, the bilinear form⟨

ψ, ψ̃
⟩∧
V :=

1
m

m∑
k=1

ψ(xk)ψ̃(xk), ψ, ψ̃ ∈ V,

is an inner product on V. Orthogonal projections with respect to this empirical inner product will be labeled P̂·, accordingly.

5.1. Spectral subspaces and AMUSE

We begin this section by explicitly stating the definition of the empirical counterpart of the projected Koopman operator Kτ (V,W),
independently of the basis sets used for V,W, see [48]. Analogous results can be obtained for the Perron–Frobenius and forward–
backward operators:

Proposition 2. Let (3) hold, and let V, W be finite-dimensional subspaces of L2ρ0 and L2ρ1 . For almost all sequences (xk, yk), and m large
enough, there is a linear operator K̂τ (V,W):W → V, satisfying⟨

ψ, K̂τ (V,W)φ
⟩∧
L2ρ0

=
1
m

m∑
k=1

ψ(xk)φ(yk) ∀ψ ∈ V. (14)

Its matrix representation with respect to ψ, φ is K̂τ (ψ, φ) = (̂C(ψ))−1̂A(ψ, φ). Also,

∥K̂τ (V,W) − Kτ (V,W)∥L(W,V) → 0

for m → ∞, where the topology on L(W,V) is induced by the standard inner products on L2ρ0 , L
2
ρ1
.

Proof. The right-hand side of (14) is a linear functional on the finite-dimensional space V with empirical inner product, which ensures
existence of the operator K̂τ (V,W). The matrix representation can be directly verified, and by (3), this representation converges to that
of Kτ (V,W) in any matrix norm, which proves the last statement. □

We also observe that for subspaces F1 ⊂ V and F2 ⊂ W, we have K̂τ (F1,F2) = P̂F1 K̂τ (V,W)P̂F2 . Next, we introduce the family
of subspaces which serve as reduced trial spaces for the Koopman operator if the standard AMUSE algorithm is employed. We have
briefly encountered these spaces before in Section 2.1.2.

Definition 2 (Spectral Subspace). Let V be a finite-dimensional Hilbert space of functions with basis ψ = {ψj}
n
j=1. Denote the spectral

ecomposition of the Gramian matrix by C(ψ) = UψΣ2
ψU

⊤

ψ , with eigenvalues arranged in decreasing order. For r ≤ n such that
σr > σr+1, denote the first r columns of Uψ by Uψ,r , and the upper r × r-block of the diagonal matrix by Σψ,r . Then the space Gr ⊂ V
spanned by orthonormal functions η⊤

r = ψ⊤(Uψ,rΣ−1
ψ,r ) is called spectral subspace (of order r) of V. The coefficient vector space associated

with Gr is denoted by Br ⊂ Rn.

Remark 3.

(i) The condition σr > σr+1 is necessary for Gr to be well-defined, otherwise it would be unclear how to break up the eigenspace
corresponding to σr = σr+1.

(ii) The spectral subspace depends on the basis chosen for the Hilbert space V. We will emphasize this dependence by writing
Gr (ψ), Br (ψ) whenever necessary.

(iii) If an orthogonal change of basis is used, that is, the basis ψ changes to ψ̃⊤
= ψ⊤Q , with Q⊤Q = Idn, then the Gramian matrix

changes to C(ψ̃) = Q⊤C(ψ)Q . Hence, the spectral subspaces Gr remain the same, the associated coefficient vector spaces are
Br = span(Q⊤Uψ,r ).

(iv) Clearly, empirical spectral subspaces Ĝr (ψ), B̂r (ψ) can be defined in the same way using the empirical Gramian matrix.

Empirical spectral subspaces are stable in the limit of infinite data:

Lemma 1. Let V be a finite-dimensional Hilbert space of functions on Rd with basis ψ = {ψj}
n
j=1. For fixed r ≤ n, let the spectral subspace

Gr be well-defined. Let xk, k ∈ N, be a sequence of Rd-valued random variables such that the first equation in (6) holds true almost surely.
Then we also have with probability one:

lim
m→∞

d(Br , B̂r ) = 0, lim
m→∞

d(Gr , Ĝr ) = 0, lim
m→∞

∥P̂Ĝr (ψ) − PGr (ψ)∥L(V) = 0,

where the topology on L(V) is induced by the standard inner product on V.
11
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roof. By assumption, we have limm→∞ ∥C(ψ) − Ĉ(ψ)∥2 = 0 almost surely, hence B̂r , Ĝr can be defined with probability one if
is large enough. As the gap between σr and σr+1 is positive, perturbation theory for symmetric matrices [49][Chapter 5, Thm 3.6]

ensures that the distance in Rn between Br and B̂r converges to zero. As these are the coefficient vector spaces corresponding to Gr , Ĝr ,
emma 4 (iii) in Appendix implies the second claim. Finally, we choose an orthonormal basis (ONB) U ∈ Rn×r of Br (ψ), and invoke
emma 5 to choose ONBs Û of B̂r (ψ) such that ∥Û − U∥2 → 0 holds almost surely. Using the representations in Lemma 4(i) and (ii),
his implies

∥P̂Ĝr (ψ) − PGr (ψ)∥L(V)

= ∥C(ψ)1/2
[
Û(Û⊤Ĉ(ψ)Û)−1Û⊤Ĉ(ψ) − U(U⊤C(ψ)U)−1U⊤C(ψ)

]
C(ψ)−1/2

∥2 → 0,

sing that Ĉ(ψ) → C(ψ) and Û → U . □

We can now use the previous result to complete our analysis of AMUSE. We have already seen in Section 2.1.4 that, if the SVD rank
is fixed, the basis sets η̂r , ζ̂r appearing in the standard AMUSE algorithm are spanning the empirical spectral subspaces Ĝr (ψ), Ĝr (φ)
n V and W. We show that the resulting empirical projection of the Koopman operator converges in concert with these spaces.

roposition 3. Let Xt be a dynamical system such that (3) holds true. Let V ⊂ L2ρ0 and W ⊂ L2ρ1 be n-dimensional subspaces with bases
, φ. For r ≤ n such that Gr (ψ) and Gr (φ) are both well-defined, we conclude that almost surely:

∥K̂τ (Ĝr (ψ), Ĝr (φ)) − Kτ (Gr (ψ),Gr (φ))∥L(W,V) → 0.

roof. We have already seen that

K̂τ (Ĝr (ψ), Ĝr (φ)) = P̂Ĝr (ψ)K̂τ (V,W)P̂Ĝr (φ), Kτ (Gr (ψ),Gr (φ)) = PGr (ψ)Kτ (V,W)PGr (φ).

ince P̂Ĝr (ψ) → PGr (ψ) and P̂Ĝr (φ) → PGr (φ) by Lemma 1, and K̂τ (V,W) → Kτ (V,W) by Proposition 2, the claim follows. □

.2. Multi-linear spectral subspaces

For the rest of this section, we assume that a vector of fixed ranks r = [r1, . . . , rp] is given. Also, V =
⨂p

k=1 V
k is a tensor product

pace of functions on Rd, where Vk
= span{ψk,ik}

nk
ik=1. The full tensor product basis is denoted by Ψ . We also introduce the symbols

:k
=

⨂k
l=1 V

l for the partial tensor product up to mode k, the corresponding basis is denoted Ψ :k. Similarly, if T is a tensor train of
rder p, the partial tensor train up to mode k ≤ p is denoted T:k

= JT(1)K ⊗ · · · ⊗ JT(k)K.
The results of the previous section can now be generalized to tensor-structured subspaces. The construction of multi-linear spectral

subspaces, to be described below, is inspired by the global SVD. Recall from Section 2.2.3 that the first step of Algorithm 3 applied to
Ψ (X) and Φ(Y ) is the same as if we were applying standard AMUSE just to V1 and W1. For k = 1, and focusing just on Ψ (X) for the
sake of illustration, the matrix of singular vectors U in line 2 of Algorithm 3 encodes a basis of the r1-dimensional spectral subspace
Gr1 (ψ1). As we show in Section 5.3, the next step amounts to computing a basis of the r2-dimensional spectral subspace for a specific
basis of the tensor product Ĝr1 (ψ1) ⊗ V2. This procedure is then repeated through all steps of the method. Some care, however, needs
to be taken when choosing the basis set for each of these spectral subspaces.

Definition 3 (Multi-linear Spectral Subspaces). Define G:0
= span{1} and θ0 = 1. Recursively for k = 1, . . . , p, consider the Gramian

matrix C(vec(θk−1 ⊗ ψk)) of G:k−1
⊗ Vk, and denote its eigenvalues by σ 2

k,l, 1 ≤ l ≤ rk−1nk. If σk,rk > σk,rk+1, denote its rk-dimensional
spectral subspace by G:k. Choose any orthonormal basis Uk ∈ Rrk−1nk×rk of the associated coefficient vector space in Rrk−1nk , and define
a basis set for G:k as (θk)⊤ = (vec(θk−1 ⊗ ψk))⊤Uk.

The subspaces G:k are then called multi-linear spectral subspaces. Their associated coefficient vector spaces in R
∏k

l=1 nl , with respect
to the basis Ψ :k, are denoted B:k.

Remark 4.

(i) Definition 3 can be repeated almost verbatim to define empirical counterparts of all quantities introduced above. As before, we
will use hats ·̂ to denote these quantities.

(ii) Note that the ONBs Uk used in the construction are coefficient vectors with respect to the previous level of recursion, that is, to
a basis of G:k−1

⊗ Vk. The coefficient vector space B:k refers to the full k-fold tensor product basis Ψ :k.

The spaces G:k are independent of the specific orthonormal bases used in each step of the construction. In fact, the following results
can be proven:

Lemma 2. Compile the orthonormal bases Uk in the construction of Definition 3 into a tensor train U, that is:

U = JU(1)K ⊗ · · · ⊗ JU(p)K, U(k)
|2= Uk, 1 ≤ k ≤ p.

For 1 ≤ k ≤ p, the partial tensor train U:k
∈ Rn1×···×nk×rk is the coefficient tensor of the basis θk with respect to Ψ :k, that is

(θk)⊤ = (Ψ :k|k)⊤U:k
|k. Moreover, let Ũk, 1 ≤ k ≤ p be a different sequence of ONBs used in the construction in Definition 3, with resulting

tensor train Ũ and basis sets θ̃k. Then there exist orthonormal matrices Qk ∈ Rrk×rk , 0 ≤ k ≤ p, such that

Ũ(k)
|2= (Qk−1 ⊗ Idnk )

⊤U(k)
|2Qk (15)

for 1 ≤ k ≤ p. In particular, θk and θ̃k are related by

(θk)⊤ = (Ψ :k|k)⊤U:k
|k, (̃θk)⊤ = (Ψ :k|k)⊤U:k

|kQk = (θk)⊤Qk, (16)

and the spaces G:k and B:k are the same in both cases.
12
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a
Q

Fig. 7. Relationship between the basis sets θk and θ̃k for the construction of multi-linear spectral subspaces. Half-filled blue circles represent the cores of U, green
circles the corresponding tensor product bases, and half-filled gray circles the orthonormal matrices Qk . The third row illustrates the recursive expression of the
product basis θk−1 ⊗ψk with respect to the coefficient tensor U:k−1 of θk−1 . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Proof. The fact that each U:k is the coefficient tensor of the basis θk can be verified directly by an inductive argument. To prove
(15)–(16), we proceed by induction over k. The claims are clearly true for k = 1 with Q0 = 1. For general k, if the claims of the Lemma
are true for k− 1, then (16) for k− 1, and Remark 3 (iii), imply that the spectral subspaces of C(vec(θk−1 ⊗ψk)) and C(vec(̃θk−1 ⊗ψk))
re the same, and the coefficient vector spaces are related by the transformation (Qk−1 ⊗ Idnk )

⊤. It follows that there is an orthonormal
k ∈ Rrk×rk such that

Ũk = (Qk−1 ⊗ Idnk )
⊤UkQk,

as claimed. In turn, this implies that

Ũ:k
|k =

(
Ũ:k−1

|k−1⊗Idnk

)
Ũk

=
(
(U:k−1

|k−1Qk−1) ⊗ Idnk

)
(Qk−1 ⊗ Idnk )

⊤UkQk

=
(
U:k−1

|k−1⊗Idnk

)
UkQk = U:k

|kQk.

This proves (16), and hence θk and θ̃k span the same space G:k with coefficient vector space B:k. □

A pictorial illustration of the relationship between θk and θ̃k is given in the first two rows of Fig. 7. Now that multi-linear spectral
subspaces have been shown to be well-defined, it is time to generalize Lemma 1 to the multi-linear case:

Lemma 3. Let V =
⨂p

k=1 V
k be a finite-dimensional tensor space of functions on Rd as described above. For a fixed vector of TT ranks

r, let all multi-linear spectral subspaces G:k be well-defined. Let xk, k ∈ N be a sequence of Rd-valued random variables such that the first
equation in (6) holds true almost surely in V. Then we have for all 1 ≤ k ≤ p:

d(B:k, B̂:k) → 0, d(G:k, Ĝ:k) → 0, ∥P̂Ĝ:k − PG:k∥L(V) → 0.

Proof. The proof is an inductive application of Lemma 1. For k = 1, the result is the same as that of Lemma 1, so let us assume the claim
stands for k−1. We fix the coefficient tensors U:k, Û:k. By Lemma 2, the unfoldings U:k−1

|k−1, Û:k−1
|k−1 provide ONBs of B:k−1, B̂:k−1. We

use the induction hypothesis and Lemma 5 to determine an orthonormal Q̂k−1 ∈ Rrk−1×rk−1 such that ∥U:k−1
|k−1−Û:k−1

|k−1Q̂k−1∥2 → 0
almost surely. By extension, we also have

∥U:k−1
|k−1⊗Idnk − (̂U:k−1

|k−1Q̂k−1) ⊗ Idnk∥2 → 0. (17)

Denoting the basis encoded by (̂U:k−1
|k−1Q̂k−1) by θ̄k−1, the matrices in (17) encode the basis sets vec(θk−1 ⊗ ψk) and vec(θ̄k−1 ⊗ ψk)

with respect to Ψ :k, see the third row in Fig. 7. We then find:

∥C(vec(θk−1 ⊗ ψk)) − Ĉ(vec(θ̄k−1 ⊗ ψk))∥2 =∥
(
U:k−1

|k−1⊗Idnk

)⊤
C(Ψ :k)

(
U:k−1

|k−1⊗Idnk

)
−

(
(̂U:k−1

|k−1Q̂k−1) ⊗ Idnk

)⊤
Ĉ(Ψ :k)

(
(̂U:k−1

|k−1Q̂k−1) ⊗ Idnk

)
∥2→ 0 a.s.,

where convergence follows from (17) and since Ĉ(Ψ :k) → C(Ψ :k). Now, we note that the dominant rk-dimensional eigenspace of
C(vec(θk−1⊗ψk)) is spanned by Uk (cf. Definition 3), while that of Ĉ(vec(θ̄k−1⊗ψk)) is spanned by (Q̂k−1⊗Idnk )

⊤Ûk. By perturbation theoryˆ rk×rk ˆ ⊤ˆ ˆ
for singular vectors and Lemma 5, we have found that there is an orthonormal Qk ∈ R such that ∥Uk − (Qk−1 ⊗ Idnk ) UkQk∥2 → 0.

13



F. Nüske, P. Gelß, S. Klus et al. Physica D 427 (2021) 133018

H

T
c

s

T

f

ence

Û:k
|kQ̂k = ((̂U:k−1

|k−1Q̂k−1) ⊗ Idnk )(Q̂k−1 ⊗ Idnk )
⊤ÛkQ̂k

→ (U:k−1
⊗ Idnk )Uk = U:k

|k.

his proves that d(B:k, B̂:k) → 0, and the conclusion about G:k, Ĝ:k follows from Lemma 4 (iii). The final statement about projectors
an be shown in the same way as in Lemma 1. □

With this, we obtain the central result of this section, which is the convergence of Koopman operator representations on multi-linear
ubspaces:

heorem 1. Let Xt be a dynamical system such that (3) holds true. Let V =
⨂p

k=1 V
k

⊂ L2ρ0 and W =
⨂p

k=1 W
k

⊂ L2ρ1 be tensor product
subspaces with bases Ψ =

⨂p
k=1 ψk and Φ =

⨂p
k=1 φk. For a fixed vector of TT ranks r, denote the multi-linear spectral subspaces of both

bases by G:k(Ψ ),G:k(Φ), and assume they are all well-defined. Then we have for all k ≤ p:

∥K̂τ (Ĝ:k(Ψ ), Ĝ:k(Φ)) − Kτ (G:k(Ψ ),G:k(Φ))∥L(W,V) → 0.

Proof. Since P̂Ĝ:k(Ψ ) → PG:k(Ψ ) in L(V), and P̂Ĝ:k(Φ) → PG:k(Φ) in L(W) by Lemma 3, the argument is just the same as in the proof of
Proposition 3. □

5.3. Multi-linear spectral subspaces and AMUSEt

We complete this section by showing that the global SVD applied to the transformed data tensor (9) is the computational tool to
compute bases of multi-linear spectral subspaces, analogous to the standard SVD applied to the data matrix. It will follow that AMUSEt
provides a representation of the Koopman operator on multi-linear spectral subspaces.

Proposition 4. Let V =
⨂p

k=1 V
k be a finite-dimensional tensor space of functions on Rd, with basis Ψ =

⨂p
k=1 ψk. Let x1, . . . , xm ∈ Rd

be data points such that the empirical spectral subspaces Ĝ:k are well-defined. For prescribed ranks r = [r1, . . . , rp], denote the global SVD
of the transformed data tensor (9) by Ψ (X) = ÛX,rΣ̂X,rV⊤

X,r , with r = rp. Then, the orthonormal part ÛX,r provides orthonormal coefficient
tensors for each of the spaces B̂:k, i.e. (̂θk)⊤ = (Ψ :k|k)⊤Û:k

X,r |k is a basis for Ĝ:k. The remaining parts of the global SVD contain the time series
of the basis for the final space Ĝ:p, i.e. Σ̂X,r V̂⊤

X,r = θ̂p(X) = (̂UX,r |p)⊤Ψ (X)|p.

Proof. We prove the statement by showing that after k ≤ p− 1 iterations in Algorithm 3, the updated core Ψ (k+1)(X) contains a time
series of the product basis vec(̂θk ⊗ ψk+1)(X), where θ̂k is a basis of Ĝ:k encoded by the partial tensor train Û:k

X,r . This is clearly true for
k = 0, as Ψ (1)(X) = ψ1(X) and θ̂0 = 1, so we can again resort to an inductive argument. Assume that, after k − 1 iterations, Ψ (k)(X) is
indeed of the form

Ψ (k)(X)|2= vec(̂θk−1 ⊗ ψk)(X),

where (̂θk−1)⊤ = (Ψ :k−1|k−1)⊤ Û:k−1
X,r |k−1 is a basis of Ĝ:k−1. It follows that the leading rk left singular vectors U of Ψ (k)(X)|2 (see line 2

of Algorithm 3) are also eigenvectors of the empirical Gramian Ĉ(vec(̂θk−1 ⊗ ψk)), as

1
m
Ψ (k)(X)|2(Ψ (k)(X)|2)⊤ = Ĉ(vec(̂θk−1 ⊗ ψk)).

Hence, the basis set

(̂θk)⊤ = (vec(̂θk−1 ⊗ ψk))⊤U = (Ψ :k|k)⊤Û:k
X,r |k

is, by definition, a basis of Ĝ:k. It remains to show that the updated core Ψ (k+1)(X) is of the required form. By inspecting the update
ormula in line 4, we see that

(ΣV⊤)Ψ (k+1)(X)|1 = (U⊤Ψ (k)(X)|2)Ψ (k+1)(X)|1
= (U⊤(vec(̂θk−1 ⊗ ψk)(X)))Ψ (k+1)(X)|1
= θ̂k(X)Ψ (k+1)(X)|1.

The last expression is a matrix of shape rk × (nk+1m). Using the basis decomposition (9) for Ψ (k+1)(X), we determine its entries as(̂
θk(X)Ψ (k+1)(X)|1

)
lk;ik+1,l

=

m∑
s=1

θ̂k,lk (xs)ψk+1,ik+1 (xs)δs,l = θ̂k,lk (xl)ψk+1,ik+1 (xl),

which, upon re-shaping, equals vec(̂θk ⊗ ψk+1)(X), as claimed. Finally, the same arguments also show that (̂θp)⊤ = (Ψ |p)⊤ÛX,r |p is a
basis of Ĝ:p, so ÛX,r |p is a basis of B̂:p, and the time series θ̂p(X) is simply contained in the remaining components Σ̂X,r V̂⊤

X,r of the global
SVD. □

We can now put the pieces together. In AMUSEt, with fixed ranks r, we separately apply global SVD to Ψ (X) and Φ(Y ). We observe
that, for r = rp,

(̂η )⊤ =
√
m(Ψ | )⊤Û | Σ̂−1, (̂ζ )⊤ =

√
m(Φ| )⊤Û | Σ̂−1
r p X,r p X,r r p Y ,r p Y ,r

14



F. Nüske, P. Gelß, S. Klus et al. Physica D 427 (2021) 133018

a
o

s
t
3
s

K
a
t

E
a
i
i

6

d
a

T
s
c
i

o

d
i
a
Ψ
a

re empirically orthonormal bases of the multi-linear spectral subspaces Ĝ:p(Ψ ) and Ĝ:p(Φ), respectively. Hence, the empirical Koopman
perator between these spaces possesses the matrix representation

K̂τ (̂ηr , ζ̂r ) = Â(̂ηr , ζ̂r ) =
1
m
η̂r (X )̂ζr (Y )⊤

= Σ̂−1
X,r (̂UX,r |p)⊤(Ψ (X)|p)(Φ(Y )|p)⊤ÛY ,r |pΣ̂

−1
Y ,r = V̂⊤

X,r V̂Y ,r = M̂τ ,r ,

which is just the reduced matrix described in Section 3.1. In summary, application of AMUSEt as outlined in Section 3.1 at fixed ranks
provides a representation of the Koopman operator on the empirical multi-linear spectral subspaces Ĝ:p(Ψ ), Ĝ:p(Φ), which consistently
approximates the corresponding representation on G:p(Ψ ), G:p(Φ), by Theorem 1.

6. Numerical examples

In this section, we provide numerical illustrations of the algorithmic and theoretical results presented in this study. All of the example
systems have been analyzed using standard techniques before, which serve as reference results for our experiments. However, we will
show that by means of our algorithms we are able to compute approximations to evolution operators on large trial spaces which are not
amenable to standard treatment. The construction of these trial spaces requires a varying degree of preprocessing between examples.
For the molecular examples, we still cannot do without prior knowledge, but the preprocessing pipeline is conceptually much simpler
compared to standard methods.

Our algorithms have been implemented in Python 3.6 and collected in the toolbox Scikit-TT.2 Furthermore, we used d3s3,
PyEMMA4 [50] as well as scikit-image5 for simulating and analyzing the numerical examples.

6.1. Molecular dynamics

We re-analyze two data sets of equilibrium molecular dynamics simulations in explicit water. The first system is the ten residue
peptide deca-alanine (see [34] for the simulation setup). After downsampling, this data set comprises m = 3 · 105 frames at time
pacing of 10 ps. As a reference, we built a Markov state model (MSM) using 500 discrete states by following a typical protocol from
he literature (linear dimension reduction by TICA, followed by k-means clustering in reduced space), see [51]. The second system is
9 residue protein NTL9. The data were produced by D. E. Shaw Research on the Anton Supercomputer [52]. The downsampled data
et comprises approximately 56,000 frames at a time spacing of 50 ns. The MSM analysis presented in [53] serves as reference model.
As both systems are stationary and reversible, we have ρ0 = ρ1 = µ, and we can use identical trial spaces V = W. Since the

oopman operator is self-adjoint in this case, all evolution operators essentially contain the same information, and singular pairs of Kτ
re in fact eigenpairs. Following standard methodology in the field, we convert eigenvalue estimates λ̂i into implied timescales (ITS) by
he formula

t̂i(τ ) = −
τ

log(̂λi)
. (18)

ach ITS bears a unit of time and corresponds to the relaxation timescale of the dynamical process associated to eigenvalue λi. ITS
re typically compared across a range of different lag times τ (implied timescale test), as ITS estimates are known to improve with
ncreasing τ , and observing a plateau indicates convergence of the Koopman model [51,54,55]. Consequently, we will also use the
mplied timescale test to evaluate the performance of tensor-based Koopman models.

.1.1. Deca-alanine
For deca-alanine, we construct the trial space V by first choosing p = 10 backbone dihedral angles of the peptide as elementary

escriptors, and then defining a subspace Vk for each of them as the span of either nk = 3 or nk = 4 scalar functions on that dihedral
ngle. These functions always include the constant and two or three periodic Gaussians of the form

ψk,ik (x) = exp
[
−

1
2sik

sin2(0.5(x − cik ))
]
.

heir positions and shapes are chosen to align with the typical marginal distribution of protein data along its backbone dihedral angles,
ee Figs. 8 (a) and (b). The full tensor space V is then of dimension N = 35

· 45
≈ 2.5 · 105, which already exceeds what is typically

onsidered feasible as trial space dimension for standard methods. The construction for Vk used here is clearly informed by physical
nsight, but only at a fairly basic level.

As the system is in equilibrium, we can generate the data matrices X, Y from just a single long trajectory, with Y being obtained by
shifting all time steps in X by the lag time τ . We then use the decomposition (9) and the HOCUR decomposition (Section 4.2) to arrive
at TT representations of the transformed data tensor Ψ (Z). Subsequently, the procedure outlined in Section 3.1 is applied to obtain of
the reduced problem (11). Focusing on just the slowest dynamical process, we monitor the second ITS t̂2(τ ) given by (18), as a function
f τ .
In line with the theoretical results presented in Section 5, we build the direct representation (9) based on varying amounts of

ata, ranging between m = 3000 and m = 3 · 105 data points. However, we find the resulting timescale estimates to be virtually
ndistinguishable. The quality of approximation seems to depend more critically on the rank of the TT representation for Ψ (Z). We
nalyze this dependence by capping the maximal rank r allowed either for the global SVD of (9), or for the HOCUR representation of
(Z), at different values. The resulting timescale estimates, as a function of the lag time τ , are shown in Figs. 8(c)–(d). In both cases,
maximal rank of 50 is sufficient to obtain excellent agreement with the Markov model results.

2 https://github.com/PGelss/scikit_tt.
3 https://github.com/sklus/d3s.
4 http://www.emma-project.org
5 http://www.scikit-image.org/.
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Fig. 8. Results for molecular dynamics simulation data of deca-alanine peptide: (a) Univariate basis set used for all φ-dihedral angles, comprised of the constant
nd periodic Gaussians centered at cik = {−2, 1}, with sik = {0.8, 0.5}. (b) The same for all ψ-dihedral angles, where periodic Gaussians are centered at
ik = {−0.5, 0.0, 2.0}, with sik = {0.8, 4.0, 0.8}. (c) Slowest timescale t̂2 obtained from (11) after constructing Ψ (Z) using the TT decomposition (9). We show
esults for different values of the maximal rank allowed during the global SVD, and of the lag time τ . The reference MSM is represented by the black line. (d) The
ame if Ψ (Z) is represented by the HOCUR algorithm, for different values of the maximal rank in Algorithm 4.

.1.2. NTL9
For NTL9, we also follow an established protocol to arrive at a basic set of descriptors. We consider all closest heavy-atom distances

etween protein residues, and rank these distances by the fraction of simulation time during which a contact between residues was
ormed (i.e. their distance is smaller than 0.35 nm). For each of these distance features, we define a space Vk as the span of the constant
nd two Gaussian functions, given by

ψk,ik (x) = exp
[
−

1
2sik

(x − cik )
2
]
,

entered at cik ∈ {0.285, 0.62}, with sik ∈ {0.001, 0.01}. Again, these parameters were selected to make sure that the marginal
istribution of the data along each distance can be reproduced by a linear combination of the Gaussians. Just as in the previous example,
he construction of the elementary function spaces relies on some degree of preprocessing, but only at a basic level. Below, we use
ither the first p = 10 or p = 20 distance features to construct the full tensor space, which is therefore of dimension N = 310

≈ 6 · 104

or N = 320
≈ 3.5 · 109. Both dimensions are beyond what is considered tractable for standard methods.

We follow essentially the same protocol as for deca-alanine, using both the direct decomposition (9) and the HOCUR iteration to
represent the data tensor Ψ (Z). For a series of lag times τ and various maximal ranks r , we apply the procedure outlined in Section 3.1
o obtain the reduced matrix M̂τ ,r in (11). Estimates for the slowest implied timescale t̂2(τ ) are shown in panel (a) of Fig. 9 for the
ecomposition (9), and for the HOCUR representation in panel (b) of the same figure.
Two observations stand out: the first is, since our focus is to illustrate the advantage of using a large non-linear model class, a

atural comparison for our model is the direct application of linear TICA [56], rather than the MSM analysis from [53], which required
significant level of expertise. Linear TICA is the same as applying the standard AMUSE Algorithm 2 to the basis set given by all
lementary descriptors (i.e. the identity function on each distance feature in our case). Our results show that a tensor-based model on
bout ten distances, using a moderate TT rank, provides the same performance as linear TICA on several hundreds of distance features.
he second observation is that including additional distance features (p = 20) does not improve timescale estimates. Rather, larger
anks are required to ensure the same quality of approximation. The HOCUR-based models seem to be less sensitive to this effect for
his example. An intuitive explanation would be that larger ranks are required to pass the relevant information down the chain of
T cores. We conclude that efficient and stable ways to compute low-rank representations of the data tensor Ψ (X) clearly remain an

mportant topic for future work.
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Fig. 9. Results for molecular dynamics simulation data of NTL9 protein: (a) Slowest timescale obtained from (11) after representing the data tensor Ψ (Z) using the
exact decomposition (9). We show results for different maximal ranks during the global SVD of Ψ (Z), and if either the first p = 10 or p = 20 distance features are
used. The MSM-based reference value, as well as the timescales computed by linear TICA are indicated by the dashed lines. (b) The same if Ψ (Z) is represented by
the HOCUR decomposition, with different maximal ranks in Algorithm 4.

Fig. 10. States of NTL9: (a) Contact map for the unfolded state computed from the first two eigenfunctions of the HOCUR model corresponding to p = 10, r = 200,
nd τ = 2µs (upper left triangle), compared to the corresponding contact map of the reference MSM (lower right triangle). (b) The same for the folded state. (c)/(d)
epresentative molecular structures for the unfolded and folded state of NTL9.

For completeness, we also verify that the eigenfunctions estimated by AMUSEt correctly encode the folding process of NTL9, which
s known as the slowest dynamical process for this system. To this end, we apply PCCA [39] to the time series of the first two
igenfunctions and assign each snapshot to one of two metastable states if the degree of membership exceeds 0.5. We then calculate
he contact frequencies separately for each of the two states. The resulting so-called contact maps are shown in the upper left triangles
f Figs. 10 (a) and (b). By comparing to the contact maps provided by the reference Markov model (lower right triangles in Figs. 10 (a)
nd (b)), we see that there is virtually no difference.

.2. ABC flow

Finally, we study a popular toy model for fluid dynamics problems, in order to illustrate the treatment of the non-stationary case
nd the computation of coherent sets using tensor-based methods. Let us consider the well-known ABC (Arnold–Beltrami–Childress)
17
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Fig. 11. Results for the non-stationary ABC flow: six coherent vortices in the domain [0, 2π ]
3 , obtained from approximate eigenfunctions of the forward–backward

perator F̂τ , computed by AMUSEt with 103 Gaussian basis functions.

low, given by the ordinary differential equation

ż1 = A sin(z3) + C cos(z2),
ż2 = B sin(z1) + A cos(z3),
ż3 = C sin(z2) + B cos(z1),

with A =
√
3, B =

√
2, and C = 1. The system is defined on the torus, i.e., 0 ≤ zi ≤ 2π for i = 1, 2, 3, see [57] for details. We

efine the lag time to be τ = 5 and sample 253 test points xi uniformly in [0, 2π ]
3. In order to compute the corresponding points yi,

e use a standard Runge–Kutta integrator with variable step size. Using a coordinate-major decomposition comprising ten Gaussian
unctions with variance 1 in each dimension, we arrive at a tensor space V = W spanned by 1000 three-dimensional Gaussians on
n equidistant grid. Since ρ0 ̸= ρ1, we are interested in eigenpairs of the projected forward–backward operator F̂τ (V,V). We apply
MUSEt as described in Section 3.1, and we use scikit-image in order to extract isosurfaces from the computed eigenfunctions. The
oherent sets shown in Fig. 11 are consistent with the results presented in [40].

. Summary

We have presented novel techniques to approximate evolution operators associated with high-dimensional dynamical systems using
ensor-structured basis sets. Specifically, we have introduced AMUSEt, a multi-linear version of the AMUSE algorithm, which allows us
o derive a reduced matrix representation of evolution operators while operating only on the data tensor. For fixed multi-linear ranks,
e have established convergence of AMUSEt in the limit of infinite data. In addition, we have provided a detailed algorithmic description
f a novel iterative method to compute a higher-order CUR decomposition of the data tensor, which only requires evaluations of the
asis set on the data. We have also presented successful applications to benchmarking data sets of molecular dynamics simulation and
luid dynamics.
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ppendix. Auxiliary results

First, we compile some useful results concerning linear operations in finite-dimensional Hilbert spaces:

emma 4. Let V be a finite-dimensional Hilbert space with basis ψ = [ψ1, . . . , ψn]
⊤ and Gramian matrix C(ψ).

(i) Let θ1, θ2 ∈ V with coefficient vectors a1, a2 with respect to ψ . Also, let B : V ↦→ V be a linear operator on V with matrix representation
B with respect to ψ . Then

⟨θ1, θ2⟩V = a⊤

1 C(ψ)a2, ∥B∥L(V) = ∥C(ψ)1/2BC(ψ)−1/2
∥2.

(ii) Let F ⊂ V be an r-dimensional subspace with basis θ . Let the matrix of coefficient vectors associated to θ be A ∈ Rn×r . The matrix
representation of the projector PF with respect to ψ is

PF = A(A⊤C(ψ)A)−1A⊤C(ψ).

(iii) Let Fν, ν = 1, 2, . . . and F be subspaces of V of dimension r ≤ n, with coefficient vector spaces Aν, A ⊂ Rn. Then

d(Aν,A) → 0 ⇒ d(Fν,F) → 0.

Proof. (i) and (ii) can be verified directly (see also [58]). To prove (iii), we fix an orthonormal basis U ∈ Rn×r of A, and then use auxiliary
Lemma 5 to select ONBs Uν of Aν such that ∥Uν − U∥2 → 0 is also satisfied. The orthonormal projectors PFν , PF then have matrix
representations with respect to ψ given by

PFν = Uν(U⊤

ν C(ψ)Uν)−1U⊤

ν C(ψ), PF = U(U⊤C(ψ)U)−1U⊤C(ψ).

Using part (i), we then find

∥PFν − PF∥L(V) = ∥C(ψ)1/2
(
Uν(U⊤

ν C(ψ)Uν)−1U⊤

ν − U(U⊤C(ψ)U)−1U⊤
)
C(ψ)1/2∥2

≤ ∥C(ψ)∥2∥Uν(U⊤

ν C(ψ)Uν)−1U⊤

ν − U(U⊤C(ψ)U)−1U⊤
∥2 → 0. □

The following technical result helps us translate convergence of subspaces in Euclidean space into convergence of specific
orthonormal bases:

Lemma 5. For ν ∈ N, let Aν ⊂ Rn be a subspace of dimension r ≤ n, each with an orthonormal basis Uν ∈ Rn×r . Let A ⊂ Rn be another
ubspace of the same dimension, with orthonormal basis U ∈ Rn×r , and assume d(Aν,A) → 0 as ν → ∞. For each ν, define Ūν ∈ Rn×r as
he closest orthonormal matrix to U in the column span of Uν , i.e., Ūν is obtained by solving the orthogonal Procrustes problem

Ūν = UνRν, Rν = argmin
R∈Rr×r ,
R⊤R=Id

∥UνR − U∥
2
F .

hen we have ∥U − Ūν∥2 → 0.

roof. From an SVD of U⊤
ν U , i.e. U⊤

ν U = VνΣνW⊤
ν , the optimal orthogonal transformation can be obtained as Rν = VνW⊤

ν [59].
oreover, from the above SVD we also obtain a compact singular value decomposition of UνU⊤

ν UU⊤ via

UνU⊤

ν UU⊤
= (UνVν)Σν(W⊤

ν U⊤),

s the matrices in brackets are orthonormal and the rank of the left-hand side equals r . Now, by the convergence of the subspaces Aν
owards A, we must have UνU⊤

ν UU⊤
→ UU⊤, and as the latter is an orthogonal projector, we conclude Σν → Idr with ν → ∞. Now

onsider the difference between U and Ūν :

U − Ūν = U − UνVνW⊤

ν = U − UνVνΣ−1
ν V⊤

ν U⊤

ν U = (Id − UνVνΣ−1
ν V⊤

ν U⊤

ν )U .

or each ν, the columns of UνVν ∈ Rn×r are orthonormal. Let the columns of Yν ∈ Rn×n−r form an orthonormal basis of the complement
f span(UνVν). Denote the orthonormal n × n-matrices obtained by padding these two column sets by Sn = [UνVν | Yν]. With this, we
an further manipulate the above expression as follows:

U − Ūν =
[
SνS⊤

ν − UνVνΣ−1
ν V⊤

ν U⊤

ν

]
U

=

[
[UνVν | Yν]

[
(V⊤
ν U⊤

ν )
Y⊤
ν

]
− UνVνΣ−1

ν V⊤

ν U⊤

ν

]
U

= (UνVν)(Id −Σ−1
ν )(V⊤

ν U⊤

ν )U + YνY⊤

ν U .

s YνY⊤
ν is a matrix representation of the orthogonal projector onto A⊥

ν , we must have YνY⊤
ν U → 0 by the convergence of the subspaces

ν . For the first term, we find:

∥(UνVν)(Id −Σ−1
ν )(V⊤

ν U⊤

ν )U∥2 ≤ ∥(UνVν)∥2∥(Id −Σ−1
ν )∥2∥(V⊤

ν U⊤

ν )∥2∥U∥2

= ∥(Id −Σ−1
ν )∥2 → 0,

y our observations above. This completes the proof. □
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