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Abstract
The Koopman operator has become an essential tool for data-driven approximation
of dynamical (control) systems, e.g., via extended dynamic mode decomposition.
Despite its popularity, convergence results and, in particular, error bounds are still
scarce. In this paper, we derive probabilistic bounds for the approximation error and the
prediction error depending on the number of training data points, for both ordinary and
stochastic differential equationswhile using either ergodic trajectories or i.i.d. samples.
We illustrate these bounds by means of an example with the Ornstein–Uhlenbeck
process. Moreover, we extend our analysis to (stochastic) nonlinear control-affine
systems. We prove error estimates for a previously proposed approach that exploits
the linearity of the Koopman generator to obtain a bilinear surrogate control system
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and, thus, circumvents the curse of dimensionality since the system is not autonomized
by augmenting the state by the control inputs. To the best of our knowledge, this is
the first finite-data error analysis in the stochastic and/or control setting. Finally, we
demonstrate the effectiveness of the bilinear approach by comparing it with state-of-
the-art techniques showing its superiority whenever state and control are coupled.

Keywords Koopman operator · Nonlinear systems · Error bounds · Data-driven
control

Mathematics Subject Classification 37A50 · 37C30 · 37M10 · 47D03 · 47D06 ·
93B28 · 93B30

1 Introduction

The Koopman framework (Koopman 1931) is the operator-theoretic basis for a wide
range of data-driven methodologies to predict the evolution of nonlinear dynami-
cal systems using linear techniques, see, e.g., Mezić (2005), Rowley et al. (2009)
or the recent survey (Brunton et al. 2022) and the references therein. The under-
lying concept is that observables, which may also be understood as outputs from
the systems-and-control perspective, can be propagated forward in time using the
linear yet infinite-dimensional Koopman operator or its generator, instead of simulat-
ing the nonlinear system and evaluating the observable functions. Its recent success
is closely linked to numerically tractable approximation techniques like extended
Dynamic Mode Decomposition (eDMD), see, e.g., Williams et al. (2015), Klus et al.
(2016), Korda and Mezić (2018b), Klus et al. (2020) for numerical techniques and
convergence results.

While the Koopman framework is well established, approximation results are typ-
ically only established in the infinite-data limit, i.e., if sufficient data are available.
Recently, Lu and Tartakovsky (2020) discussed error bounds w.r.t. DMD invoking the
seminalwork (Korda andMezić 2018b) byKorda andMezić.While the authors numer-
ically demonstrate the effectiveness of their approach even for nonlinear parabolic
Partial Differential Equations (PDEs), see also their extension (Lu and Tartakovsky
2021), there remains a significant gap from a more theoretical point of view since
the approximation error is assumed to be zero for finite data, see Lu and Tartakovsky
(2020, Remark 3.1). Mamakoukas et al. (2021) mimic a Taylor-series expansion based
on a particular set of observables to approximate the system dynamics of an Ordinary
Differential Equation (ODE). This work may be understood as a promising approach
to incorporate (local) knowledge on the system dynamics in the Koopman framework.
However, a bound on the prediction error in terms of data is not deduced. Error bounds
for Koopman eigenvalues in terms of the finite-data estimation error were derived in
Webber et al. (2021), but the estimation error itself was not quantified. InMollenhauer
et al. (2020), concentration inequalities were applied to bound the estimation error for
the co-variance and cross-covariance operators involved inKoopman estimation. In the
exhaustive preprint (Kurdila and Bobade 2018), the authors treat the projection error
for different approximation spaces such as, e.g., reproducing kernel Hilbert spaces

123



Journal of Nonlinear Science            (2023) 33:14 Page 3 of 34    14 

and wavelets. The estimation error is also discussed briefly in Sect. 8.5. In Zhang and
Zuazua (2021), besides providing a finite-data error bound on the approximation of the
Koopman operator in the context of ODEs, the authors estimate the projection error by
means of finite-element analysis. In conclusion, to the best of our knowledge,1 Zhang
and Zuazua (2021), Kurdila and Bobade (2018) are the only works providing rigorous
error bounds for Koopman-based approximations of a dynamical system governed by
a nonlinear ODE.

In this paper, we rigorously derive probabilistic bounds on the approximation error
(or finite-data estimation error) and the (multi-step) prediction error for nonlinear
Stochastic Differential Equations (SDEs). This, of course, also includes nonlinear
ODEs.Thededucedbounds on the approximation error andprediction accuracy explic-
itly depend on the number of data points used in eDMD.To this end, besides usingmass
concentration inequalities and a numerical error analysis to deal with the error propa-
gation in time, we employ substantially different techniques in comparison to Kurdila
and Bobade (2018), Zhang and Zuazua (2021) to provide an additional alternative
assumption based on ergodic sampling tailored to stationary SDEs. Our results in this
setting focus on the concept of asymptotic variance, see Lelièvre and Stoltz (2016) and
the references therein. In contrast to most concentration inequalities, the asymptotic
variance is a genuinely dynamical quantity. Even though it cannot be directly accessed
for most complex systems, it provides a solid basis for further theoretical study of the
estimation error. For instance, it was shown in Duncan et al. (2016) that a spectral
analysis of the generator can be used to speed up convergence to equilibrium and,
by extension, the convergence of empirical estimators. In this study, we use a simple
Ornstein–Uhlenbeck process to illustrate our error bounds in practice and show that
they are surprisingly sharp. This serves as additional motivation to continue the study
of the sampling error for ergodic sampling by means of asymptotic variances. Let us
stress that we do not fully analyze the projection error; in other words, how much the
Koopman generator fails to be invariant on the approximation subspace, referring to
the existing literature Kurdila and Bobade (2018) and Zhang and Zuazua (2021) in the
autonomous case and our follow-up work (Schaller et al. 2022) in the control setting.

W.r.t. the application of Koopman theory in control, a lot of research has been
invested over the past years, beginning with the popular DMD with control (Proctor
et al. 2016),whichwas later used inModel PredictiveControl (MPC) (Korda andMezić
2018a). Another popular method is to use a coordinate transformation into Koopman
eigenfunctions (Kaiser et al. 2021) or the already mentioned component-wise Taylor
series expansion (Mamakoukas et al. 2021). In Lu et al. (2020), the prediction error of
themethodproposed inProctor et al. (2016)was estimated using the convergence result
of Korda and Mezić (2018b). However, the result is of purely asymptotic nature, i.e.,
it does not state a convergence rate in terms of data points. All approaches mentioned
until now yield linear surrogate models of the form Ax + Bu, i.e., the control enters
linearly. For general control-affine systems, numerical simulation studies indicate that
bilinear surrogate models are better suited, see Goswami and Paley (2017), Peitz et al.
(2020), Bruder et al. (2021), Peitz and Bieker (2021). The technique proposed in

1 We are already referring to two authoritative references on preprint servers supporting our claim that
finite-data error bounds are still missing; thanks to one of the unknown referees for drawing our attention
to the still unpublished work (Kurdila and Bobade 2018).
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Peitz and Klus (2019); Peitz et al. (2020) constructs its surrogate model from nc + 1
autonomous Koopman operators, where nc is the control dimension. The key feature
is that the state-space dimension is not augmented by the number of control inputs,
which counteracts the curse of dimensionality in comparisonwith themorewidespread
approach introduced in Korda andMezić (2018a). Compared to Peitz et al. (2020), we
present a detailed analysis of the accuracy regarding both the dictionary size and the
amount of training data. Even though the bound is rather coarse on the operator level,
we demonstrate that it correctly captures the qualitative behavior. In this context, we
provide a probabilistic bound on the approximation error of the projected Koopman
generator, the projected Koopman semigroup and the respective trajectories. To this
end, we extend our results toward nonlinear control systems. Besides a rigorous bound
on the approximation error, we present estimates on the (auto-regressive) prediction
accuracy, i.e., in an open-loop prediction (without feedback). For control systems,
we also refer to the follow-up work (Schaller et al. 2022), where we obtained the
following two extensions: On the one hand, we deduced quantitative estimates of the
projection error depending on the (finite) dictionary size. Combining this with the error
bounds depending on the (finite) number of data points proposed in this work yields a
complete analysis of the approximation error. On the other hand, we further elaborated
the estimates such that the error bounds uniformly hold for a set of admissible control
functions rendering the approach applicable for optimal and predictive control.

The paper is structured as follows. Firstly, in Sect. 2, we deduce a rigorous bound on
the approximation error for nonlinear SDEs. Then, we extend our analysis to nonlinear
control-affine systems in Sect. 3. In Sect. 4, two numerical simulation studies for the
Ornstein–Uhlenbeck system (SDE) and the controlled Duffing equation (nonlinear
control-affine system) are presented before conclusions are drawn in Sect. 5.

2 Finite-Data Bounds on the Approximation Error: Nonlinear SDEs

In this section, we analyze the approximation quality of extended Dynamic Mode
Decomposition (eDMD) with finitely many data points for the finite-dimensional
stochastic differential equation

dXt = F(Xt ) dt + σ(Xt ) dWt , (SDE)

where Xt ∈ X ⊂ R
d is the state, F : X → R

d is the drift vector field, σ : X → R
d×d

is the diffusion matrix field, and Wt is a d-dimensional Brownian motion. We assume
that F, σ satisfy standard Lipschitz properties to ensure global existence of solutions
to (SDE), see the textbook (Oksendal 2013) for an introduction to this class of systems.
We stress that the deterministic case is included by simply setting σ ≡ 0, leading to
the ordinary differential equation

d
dt x(t) = F(x(t)).

The state space is assumed to be a measure space (X, �X, μ) with Borel σ -algebra
�X and probability measure μ. In case of an ODE, the set X is often assumed to be
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compact and forward-invariant and the probability measure is the standard Lebesgue
measure, cf. Zhang and Zuazua (2021).

Definition 1 (Koopman operator) Let Xt satisfy (SDE) for t ≥ 0. The Koopman
operator semigroup associated with (SDE) is defined by

Kt f (x0) = E
x0 [ f (Xt )] = E[ f (Xt )|X0 = x0]

for all bounded measurable functions f .

In case of ergodic sampling, that is, obtaining data points from a single long trajectory,
we will assume invariance of the measure μ w.r.t. the stochastic process Xt .

Definition 2 (Invariant measure with positive density) A probability measure μ is
called invariant if it satisfies

∫
X

Kt f dμ =
∫
X

f dμ

for all bounded measurable functions f and all t ≥ 0. Further, μ has an everywhere
positive density ρ : X → R if μ(A) = ∫

A ρ(x) dx holds for all A ∈ �X.

We can now formulate our assumption on the underlying dynamics.

Assumption 3 Let either of the following hold:

(a) The set X is compact and forward invariant (∀ x0 ∈ X : Px0(Xt ∈ X) = 1 for
all t ≥ 0) and μ is the normalized Lebesgue measure. Moreover, the Koopman
operator can be extended to a strongly continuous semigroup on the Hilbert space
L2

μ(X).
(b) The probability measure is an invariant measure in the sense of Definition 2.

We briefly comment on this assumption and first note that forward invariance of X
can be weakened, if one is only interested in estimates for states contained in X,
see also Zhang and Zuazua (2021, Section 3.2). Moreover, if the dynamics obey an
ODE, it was shown that the Koopman operator can indeed be extended to a strongly
continuous semigroup on L2

μ(X), see also Zhang and Zuazua (2021). Second, the
assumption of invariance of the underlying probability measure is satisfied for a broad
class of SDEs, see, e.g., Risken (1996). It can be checked that μ is then invariant for
Xt , that is, P(Xt ∈ A) = μ(A) holds for all A ∈ �X and t ≥ 0, provided X0 is
distributed according to μ. Under Assumption 3(b), Definition 1 can be extended to
the Lebesgue spaces L p

μ(X), 1 ≤ p < ∞, i.e., the Banach spaces of all (equivalence
classes of) measurable functions f : X → R with

∫
X

| f |p dμ < ∞. Then, the
Koopman operators Kt form a strongly continuous semigroup of contractions on all
spaces L p

μ(X), see Bakry et al. (2013). The functions in any of these spaces are often
referred to as observables.

Next, we recall the definition of the generator associated with the semigroup Kt :
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Definition 4 (Koopman generator) The infinitesimal generator L is defined via

L f := lim
t→0

(Kt − Id) f

t
(1)

for all f ∈ D(L), where D(L) is the set of functions for which limit (1) exists in the
appropriate topology.

For sufficiently smooth functions f , Ito’s lemma (Oksendal 2013) shows that the gen-
erator acts as a second-order differential operator, defined in terms of the coefficients
of (SDE), i.e.,

L = F · ∇ + 1
2σσ� : ∇2 (2)

with A : B := ∑
i, j ai, j bi, j being the standard Frobenius inner product for matrices.

In what follows, we will focus exclusively on the Koopman semigroup on the Hilbert
space L2

μ(X) with inner product 〈 f , g〉μ = ∫
X

f g dμ. As the semigroup is strongly
continuous on L2

μ(X) by our assumptions, by standard semigroup theory, the domain
D(L) together with the graph norm forms a dense Banach space in L2

μ(X).

2.1 Extended Dynamic Mode Decomposition

In this part we introduce the data-driven finite-dimensional approximation by eDMD
of the Koopman generator defined in (1), see, e.g., Williams et al. (2015), Klus et al.
(2016), Klus et al. (2018). To this end, for a fixed set of linearly independent observ-
ables ψ1, . . . , ψN ∈ D(L), we consider the finite-dimensional subspace

V := span{{ψ j }N
j=1} ⊂ D(L).

Let PV denote the orthogonal projection onto V. We define the Galerkin projection of
the Koopman generator byLV := PVL|V. Note that this is not the restriction ofL onto
V, as the image is also projected back ontoV. IfV is an invariant set under the action of
the generator, then LV = L|V holds. As dimV = N , the linear operator LV : V → V

may be represented by a matrix. In what follows, we denote the matrix representation
of LV in terms of the basis functions ψ1, . . . , ψN by the same symbol LV as the
operator itself in a slight abuse of notation. Thus, using Klus et al. (2020), we get

LV = C−1A

with C, A ∈ R
N×N defined by Ci, j = 〈ψi , ψ j 〉L2

μ(X) and Ai, j = 〈ψi ,Lψ j 〉L2
μ(X).

The norm of the isomorphism from V to R
N depends on the smallest resp. largest

eigenvalues of C , cf. Proposition 21 in “Appendix A.1.”
Consider data points x0, . . . , xm−1 ∈ X. In the following, these data are either

drawn from a trajectory of an ergodic system or sampled independent and identically
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distributed (i.i.d.). We state this as the following assumption, using the notation:

L2
μ,0(X) := { f ∈ L2

μ(X) : 〈 f , 1〉μ = 0}.

Assumption 5 Let Assumption 3 hold and assume either of the following.

(i id) The data are drawn i.i.d. from the measure specified via Assumption 3.
(erg) Assumption 3.(b) holds and the data are obtained as snapshots from a single

ergodic trajectory, that is, from a single long trajectory of dynamics (SDE) with
x0 drawn from the unique invariant measure μ. Further assume the Koopman
semigroup is exponentially stable on L2

μ,0(X), i.e., ‖Kt‖L2
μ,0(X) ≤ Me−ωt for

some M ≥ 1, ω > 0.

The second assumption (erg) is satisfied for a broad class of ergodic SDEs that are
considered widely in, for example, statistical physics and molecular simulation. How-
ever, it should also be noted that it is not at all universal. For instance, for ergodic
ODEs, the Koopman operator is unitary and hence cannot be exponentially stable. In
this case one can still resort to i.i.d. sampling.
Let us form the transformed data matrices

�(X) :=
((

ψ1(x0):
ψN (x0)

)∣∣∣∣ . . .
∣∣∣∣
(

ψ1(xm−1):
ψN (xm−1)

))

L�(X) :=
((

(Lψ1)(x0):
(LψN )(x0)

)∣∣∣∣ . . .
∣∣∣∣
(

(Lψ1)(xm−1):
(LψN )(xm−1)

))
.

The evaluation ofL can be realized via representation (2). If the coefficients of dynam-
ics (SDE) are not available in explicit form, they need to be approximated, for example,
using Kramers–Moyal expansions. The analysis of this source of error is beyond the
scope of this study. Furthermore, there might occur challenges when evaluating the
time derivatives of the observables to compute L�(X) if the system is not explicitly
given. This is a well-known problem and may be addressed by various numerical dif-
ferentiation techniques (Brunton et al. 2016; van Breugel et al. 2020). Alternatively,
one can resort to the finite-time Koopman operator as performed in Sect. 2.3, which
has been observed to provide robust results in various applications, cf., e.g., Peitz et al.
(2020); Klus et al. (2022). The empirical estimator for the Galerkin projection LV is
then given by

L̃m = C̃−1
m Ãm

with C̃m = 1
m �(X)�(X)�, Ãm = 1

m �(X)L�(X)� ∈ R
N×N . In all scenarios of

Assumption 5, we have with probability one that

(1) L̃m is well-defined for large enough m, that is, C̃m is invertible, and
(2) L̃m converges to LV for m → ∞, see, e.g., Klus et al. (2018, 2020).
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For the case of a long trajectory, this result follows from ergodic theory, which is
concerned with the convergence of time averages to spatial averages as the data size
grows to infinity (Beck and Schwartz 1957). Ergodic theory particularly applies to
systems with a unique invariant measure.

2.2 Error Bounds on Approximations of Projected Koopman Generator And
Operator

Next, we quantify the approximation quality of the data-driven finite-dimensional
approximation of theKoopman generator, i.e., for a given linear spaceV of observables
and data x0, . . . , xm−1 ∈ X, we aim to estimate

‖LV − L̃m‖F = ‖C−1A − C̃−1
m Ãm‖F .

2.2.1 Concentration Bounds for RandomMatrices

We start by deriving entry-wise error bounds for the data-driven mass and stiff-
ness matrix, respectively. Since most of the arguments are significantly simpler for
i.i.d. sampling, cf. Remark 11 at the end of this subsection, we first consider the more
involved situation, i.e., ergodic sampling. This is of particular interest as simulation
data of dynamics (SDE) can, then, be directly used.

For x ∈ X, consider a centered scalar random variable

φ : X �→ R,

∫
X

φ(x) dμ(x) = 0.

We denote its variance with respect to the invariant measure by

σ 2
φ = E

μ[φ2] = ‖φ‖2L2
μ
.

Moreover, we set φk = φ(xk) for given data points xk , k ∈ {0, 1, . . . , m − 1} and
define the averaged random variable

φ̄m := 1

m

m−1∑
k=0

φk .

In Lemma 6 below, we quantify the variance of the averaged random variable φ̄m .
The key point is the decomposition of the variance into an asymptotic contribution,
independent of m, and a second contribution, which decays with an explicitly given
(polynomial) dependence on the amount of data m.

Lemma 6 Let Assumption 5.(erg) hold. Then we have

σ 2
φ̄m

= 1

m

[
σ 2

φ,∞ − Rm
φ

]
. (3)
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The asymptotic variance σ 2
φ,∞ and the remainder term Rm

φ are given by

σ 2
φ,∞=σ 2

φ + 2
∞∑

l=1

〈φ, Kl	t φ〉μ, Rm
φ =2

∞∑
l=m

〈φ, Kl	t φ〉μ+ 2

m

m−1∑
l=1

l〈φ, Kl	t φ〉μ.

Proof We repeat the proof given in Lelièvre and Stoltz (2016, Section 3.1.2) for the
sake of illustration:

σ 2
φ̄m

= 1

m2

m−1∑
k,l=0

E
μ [φk φl ] = 1

m
σ 2

φ + 2

m2

m−1∑
k=0

m−1∑
l=k+1

E
μ [φk φl ]

= 1

m

[
σ 2

φ + 2

m

m−1∑
k=0

m−1∑
l=k+1

E
μ
[
φ0 φl−k

]] = 1

m

[
σ 2

φ + 2

m

m−1∑
k=0

m−k−1∑
l=1

E
μ [φ0 φl ]

]

= 1

m

[
σ 2

φ + 2

m

m−1∑
l=1

(m − l)Eμ [φ0 φl ]

]
= 1

m

[
σ 2

φ+2
m−1∑
l=1

(1 − l
m )〈φ, Kl	t φ〉μ

]
.

The result follows by adding and subtracting the term 2
∑∞

l=m〈φ, Kl	t φ〉μ. ��

Remark 7 The assumption of exponential stability is satisfied, for example, if the
generator L is self-adjoint (also known as detailed balance or reversibility) and addi-
tionally satisfies a Poincaré or spectral gap inequality (Lelièvre and Stoltz 2016). The
requirement 〈 f , 1〉μ = 0 is necessary, as the constant function is invariant for Kt .

Remark 8 The proof of Lemma 6 shows that σ 2
φ,∞ = limm→∞ σ 2

φ̄m
≥ 0; hence, it can

indeed be interpreted as a variance.
For reversible systems, we have 〈φ, Kl	t φ〉μ ≥ 0 by symmetry of the Koopman

operator. Therefore, σ 2
φ,∞ ≥ σ 2

φ > 0 is guaranteed in this case, and the variance σ 2
φ̄m

approaches 1
m σ 2

φ,∞ from below.

Next, we derive an estimate for the remainder term in terms of the number m of data
points.

Lemma 9 Let Assumption 5.(erg) hold, and set q = e−ω	t < 1. Then

|Rm
φ | ≤ 2σ 2

φ

m

q

(1 − q)2
.

Proof We first observe that by the Cauchy Schwarz inequality

|〈φ,Kl	t φ〉μ| ≤ ‖Kl	t ‖L(L2
μ,0(X),L2

μ(X))‖φ‖2L2
μ(X)

≤ e−ω	t lσ 2
φ ,
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and therefore:

|Rm
φ | ≤ 2σ 2

φ

[ ∞∑
l=m

e−ω	t l + 1

m

m−1∑
l=1

le−ω	t l

]

= 2σ 2
φ

[
qm

1 − q
+ 1

m

(m − 1)qm+1 − mqm + q

(1 − q)2

]

= 2σ 2
φ

m

q(1 − qm)

(1 − q)2
≤ 2σ 2

φ

m

q

(1 − q)2
.

In the second line, we have used the geometric series for the first term and a similar
identity for the sum

∑∞
l=1 lql , q < 1. The third line is obtained by direct simplifica-

tion. ��
We can now combine the results of Lemmas 6 and 9 in order to obtain a concentration
bound for a centered, matrix-valued random variable. To this end, we consider an
N × N random matrix 
 with all entries φi j ∈ L2

μ,0 centered. We define 
k and 
m

as for the scalar case, i.e., 
k = 
(xk) and 
m = 1
m

∑m−1
k=0 
k .

Proposition 10 Let Assumption 5.(erg) hold„ set q = e−ω	t , and assume σ 2
φi j ,∞ > 0

for all (i, j). Let 
 ∈ R
N×N be a centered, matrix-valued random variable in L2

μ.
Denote the matrices of all entry-wise variances and asymptotic variances by

�
 = (
σφi j

)N
i, j=1

, �
,∞ = (
σφi j ,∞

)N
i, j=1

Then, for any given δ > 0, and m ∈ N, we have with probability at least 1 − δ that

‖
m‖F ≤ N√
mδ

[
‖�
,∞‖2F + 2q

m(1 − q)2
‖�
‖2F

]1/2
. (4)

For reversible systems, we obtain the simplified bound

‖
m‖F ≤ N√
mδ

‖�
,∞‖F . (5)

Proof Noting that [
m]i j = [φi j ]m , the scalar Chebyshev inequality and the result of
Lemma 6, yield for all (i, j) :

P

(
[
m]2i j ≤ ε2

)
≥ 1 −

σ 2
[φi j ]m

ε2
= 1 −

1
m [σ 2

φi j ,∞ − Rm
φi j

]
ε2

≥ 1 − 1

mε2

[
σ 2

φi j ,∞ +
2σ 2

φi j
q

m(1 − q)2

]
.
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The second term on the right-hand side does not exceed δ
N2 if

ε2 ≥ N 2

mδ

[
σ 2

φi j ,∞ +
2σ 2

φi j
q

m(1 − q)2

]
,

in other words, there is a set of trajectories of probability at least 1 − δ
N2 such that

[
m]2i j ≤ N 2

mδ

[
σ 2

φi j ,∞ +
2σ 2

φi j
q

m(1 − q)2

]
.

On the intersection of these sets, we have that

‖
m‖F ≤ N√
mδ

[
‖�
,∞‖2F + 2q

m(1 − q)2
‖�
‖2F

]1/2
,

and the probability of the intersection is at least 1− δ by Lemma 22. In the reversible
case, we know that Rm

φi j
≥ 0 for all (i, j), and therefore

P

(
[
m]2i j ≤ ε2

)
≥ 1 − 1

mε2
σ 2

φi j ,∞. (6)

Simplified bound (5) follows by repeating the above argument starting from this
inequality. ��
Remark 11 (I.i.d. sampling) If the data are sampled i.i.d., that is, Assumption 5.(iid)
holds instead of Assumption 5.(erg), then by standard results, one has σ 2

φ̄m
= 1

m σ 2
φ .

The bounds from Proposition 10 simplify significantly in this case. By the Chebyshev
inequality:

P

(
[
m]2i j ≤ ε2

)
≥ 1 −

1
m σ 2

φi j

ε2
,

which leads to the following error estimate for fixed m ∈ N and δ > 0:

‖
m‖F ≤ N√
mδ

‖�
‖F . (7)

The setting of sampling via the Lebesgue measure on a compact setXwas thoroughly
considered in Zhang and Zuazua (2021).

2.2.2 Error Bound for the Projected Generator

Next, we deduce our first main result by applying the probabilistic bounds obtained
in Proposition 10 to estimate the error for the data-driven Galerkin projection L̃m .
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Theorem 12 (Approximation error: probabilistic bound) Let Assumption 5 hold. Then,
for any error bound ε̃ > 0 and probabilistic tolerance δ̃ ∈ (0, 1), we have

P

(
‖LV − L̃m‖F ≤ ε̃

)
≥ 1 − δ̃ (8)

for any amount m ∈ N of data points such that the following hold with

ε = min

{
1,

1

‖A‖‖C−1‖
}

· ‖A‖ε̃
2‖A‖‖C−1‖ + ε̃

and δ = δ̃

3
.

• In case of ergodic sampling, i.e., Assumption 5.(erg),

m ≥ N 2

δε2

[
‖�
,∞‖2F + 2q

m(1 − q)2
‖�
‖2F

]

• In case of ergodic sampling, i.e., Assumption 5.(erg), of a reversible system

m ≥ N 2

δε2
‖�
,∞‖2F .

• In case of i.i.d. sampling, i.e., Assumption 5.(iid),

m ≥ N 2

δε2
‖�
‖2F .

Proof In this proof, we will omit the subscript for the norm and set ‖ · ‖ = ‖ · ‖F . Let
us introduce the centered matrix-valued random variables


C (x) := �(x)�(x)� − C and 
A(x) := �(x)L�(x)� − A,

where � = [ψ1, . . . , ψN ]�. Then C̃m − C = [
C ]m and Ãm − A = [
A]m . Hence,
we may apply Proposition 10 to these matrix-valued random variables. First, by the
choice of m above we have

P

(
‖C − C̃m‖ ≤ R

‖A‖‖C−1‖
)

≥ 1 − δ̃
3 and P

(
‖ Ãm − A‖ ≤ R

)
≥ 1 − δ̃

3 ,

where

R := ‖A‖ε̃
2‖A‖‖C−1‖ + ε̃

= ε̃

2
(
‖C−1‖ + ε̃

2‖A‖
) .

Moreover, we compute

‖C̃−1
m − C−1‖=‖C̃−1

m (C − C̃m)C−1‖≤‖C−1‖‖C−C̃m‖
(
‖C̃−1

m −C−1‖+‖C−1‖
)
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which implies

‖C̃−1
m − C−1‖ ≤ ‖C−1‖2‖C − C̃m‖

1 − ‖C−1‖‖C − C̃m‖ .

Hence, by straightforward computations we obtain

P

(
‖C̃−1

m − C−1‖ ≤ ε̃
2‖A‖

)
≥ P

(
‖C−1‖2‖C − C̃m‖

1 − ‖C−1‖‖C − C̃m‖ ≤ ε̃
2‖A‖

)

= P

(
‖C − C̃m‖ ≤ R

‖A‖‖C−1‖
)

≥ 1 − δ̃
3 .

and

P

(
‖ Ãm − A‖ ≤ ε̃

2‖C̃−1
m ‖
)

≥ P

(
‖ Ãm − A‖ ≤ ε̃

2
(
‖C−1‖+‖C̃−1

m −C−1‖
)
)

≥ P

⎛
⎝‖ Ãm − A‖ ≤ ε̃

2

(
‖C−1‖+ ε̃

2‖A‖
) ∧ ‖C̃−1

m − C−1‖ ≤ ε̃
2‖A‖

⎞
⎠

≥
(
1 − δ̃

3

)
+
(
1 − δ̃

3

)
− 1 = 1 − 2δ̃

3 .

Thus, we conclude

P(‖C−1A − C̃−1
m Ãm‖ ≤ ε̃) = P

(
‖C̃−1

m (A − Ãm) +
(

C−1 − C̃−1
m

)
A‖ ≤ ε̃

)

≥ P

(
‖C̃−1

m ‖‖A − Ãm‖ + ‖C−1 − C̃−1
m ‖‖A‖ ≤ ε̃

)

≥ P

(
‖A − Ãm‖ ≤ ε̃

2‖C̃−1
m ‖ ∧ ‖C−1 − C̃−1

m ‖ ≤ ε̃
2‖A‖

)

≥ (1 − 2δ̃
3 ) + (1 − δ̃

3 ) − 1 = 1 − δ̃,

which is (8). ��
A similar result as Theorem 12 was obtained for ODE systems in Zhang and Zuazua
(2021) under the assumption that the data are drawn i.i.d.

An immediate consequence of the estimate on the generator approximation error
is a bound on the error of the trajectories. To this end, consider the systems

ż = LVz z(0) = z0 (9)

˙̃z = L̃m z̃ z̃(0) = z0. (10)

where z0 ∈ R
n , which represents an ODE in terms of the coefficients in the basis

representation of elements ofV.Wewill leverage the error bound obtained in Theorem
12 to derive an estimate on the resulting prediction error in the observables, i.e.,
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‖z(t) − z̃(t)‖2. Note that in view of the isomorphism V � R
N this also directly

translates to an error estimate for trajectories in V.

Corollary 13 Let Assumption 5 hold. Then for any T > 0 and δ, ε > 0 there is m0 ∈ N

such that for m ≥ m0 data points we have

min
t∈[0,T ]P

(‖z(t) − z̃(t)‖2 ≤ ε
) ≥ 1 − δ.

Proof See “Appendix A.3.” ��
A sufficient amount of data m0 can be easily specified by combining the calculations
displayed in the proof of Corollary 13, i.e., Gronwall’s inequality and Condition (4).
Under additional assumptions on the Koopman semigroup generated by LV, e.g.,
stability, one can refine this estimate or render it uniform in T , cf. Corollary 24 in
“Appendix A.3.”

2.3 Error Bound for the Projected Koopman Operator

Similar to the derivation of the probabilistic bound on the projected generator, a
bound on the Koopman operator is possible. We briefly sketch the main steps of
the argumentation. Let t = l	t for some l ∈ N and again choose a subspace
V = span{{ψ j }N

j=1} ⊂ L2
μ(X) (which, in contrast to the generator-based setting,

is not required to be contained in the domain). The restricted Koopman operator on
this subspace is defined via

Kt
V

:= PVKt |V = C−1A,

where

Ci, j = 〈ψi , ψ j 〉L2
μ(X) and Ai, j = 〈ψi ,Ktψ j 〉L2

μ(X).

Define the data matrices

�(X) :=
((

ψ1(x0):
ψN (x0)

)∣∣∣∣ . . .
∣∣∣∣
(

ψ1(xm−l−1):
ψN (xm−l−1)

))

�(Y ) :=
((

ψ1(xl ):
ψN (xl )

)∣∣∣∣ . . .
∣∣∣∣
(

ψ1(xm−1):
ψN (xm−1)

))
.

The empirical estimator is then defined similarly to the generator setting via

K̃t
m = C̃−1

m Ãm

with

C̃m = 1
m �(X)�(X)� and Ãm = 1

m �(X)�(Y )�.

123



Journal of Nonlinear Science            (2023) 33:14 Page 15 of 34    14 

We now present the analogue to Theorem 12 for the Koopman operator which follows
by straightforward adaptations of the results of Sect. 2.2.

Theorem 14 Let Assumption 5 hold. Then, for t ≥ 0, any error bound ε > 0 and
probabilistic tolerance δ ∈ (0, 1) there is m0 ∈ N such that for any m ≥ m0,

P

(
‖Kt

V
− K̃t

m‖F ≤ ε
)

≥ 1 − δ.

A sufficient amount of data m0 can be specified analogously to Theorem 12.

3 Extension to Control Systems

In this section, we derive probabilistic bounds on the approximation error of nonlinear
control-affine SDE systems of the form

dXt =
(

F(Xt ) +
nc∑

i=1

Gi (Xt )ui

)
dt + σ(Xt ) dWt , (11)

with input u ∈ R
nc and state Xt ∈ X, where F : X → R

n and Gi : X → R
n ,

i = 1, . . . , nc, are locally Lipschitz-continuous vector fields. In the deterministic case
σ ≡ 0 the controlled SDE reduces to the control-affine ODE system

ẋ = F(x) +
nc∑

i=1

Gi (x)ui . (12)

We will describe how one can apply the bounds on the generators of autonomous
(SDE) systems obtained in Sect. 2 in order to obtain bounds for prediction of control
systems, either for i.i.d. or ergodic sampling. Again, we will analyze the error on the
finite dictionary resulting from finitely many data points, depending on the chosen
control variable. In the i.i.d. setting, we analyzed the projection error using a finite
element dictionary in the follow-upwork (Schaller et al. 2022). Further, also in Schaller
et al. (2022), we derived uniform bounds for data requirements and dictionary size
w.r.t. the control variable, assuming that the control is constrained to a compact subset.

Central in this part is the fact that theKoopman generators for control-affine systems
are control-affine. More precisely, if Lū denotes the Koopman generator for a control-
affine systemwith constant control ū ∈ R

nc and ū = ∑r
i=1 αi ūi is a linear combination

of constant controls ūi ∈ R
nc , we have

Lū = L0 +
nc∑

i=1

αi
(Lūi − L0). (13)

This easily follows from representation (2) of the Koopman generator, see also Peitz
et al. (2020, Theorem 3.2) for the special (deterministic) case σ ≡ 0.
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We will utilize this property to invoke our results from Sect. 2 to approximate the
Koopman generator corresponding to basis elements of the control space, that is, Lei ,
i = 1, . . . , nc, andL0 corresponding to the drift term to form a bilinear control system
in the observables.

Analogously to Assumption 5 we have the following two cases for the collected
data and the underlying measure.

Assumption 15 Let either of the following hold:

(i id) The data for each autonomous system with control u = ei , i = 0, . . . , nc, are
sampled i.i.d. from either the normalized Lebesgue measure and contained in
a compact set X or from an invariant measure μi in the sense of Definition 2.

(erg) The data for each autonomous system with control u = ei , i = 0, . . . , nc,
satisfy Assumption 5.(erg), i.e., is drawn from a single ergodic trajectory, the
probability measure μi of the resulting autonomous SDE is invariant in the
sense of Definition 2 and the Koopman semigroup is exponentially stable on
L2

μi ,0
(X).

It is important to note that in the first case of (iid), we did not make any assumption
of invariance of the set X for all autonomous systems corresponding to the constant
controls ei , i = 0, . . . , nc, as this would be very restrictive. Hence, we have to ensure
that the state trajectories remain (with probability one in stochastic setting (11)) in
the set X. Sufficient conditions are, e.g., controlled forward invariance of the set X
or knowing that the initial condition is contained in a suitable sub-level set of the
optimal value function of a respective optimal control problem, see, e.g., Boccia et al.
(2014) or Esterhuizen et al. (2020) for an illustrative application of such a technique
in showing recursive stability of Model Predictive Control (MPC) without stabilizing
terminal constraints for discrete- and continuous-time systems, respectively.

In the following, we set Oi = L2
μi

(X), i = 1, . . . , nc, and consider the generators
Lei in these spaces, respectively. Further, let ψ1, . . . , ψN : X → R be N linearly
independent observables whose span V = span{ψ1, . . . , ψN } satisfies

V ⊂ D(Le0) ∩ D(Le1) ∩ . . . ∩ D(Lenc ), (14)

where ei , i = 1, . . . , nc, denote the standard basis vectors of Rnc and e0 := 0. We
now discuss two cases of sampling, one corresponding to the approach of Sect. 2 and
one to the standard case of i.i.d. sampling as in Zhang and Zuazua (2021).

As the original system and the Koopman generator are control affine, the remainder
of this section is split up into two parts. First, we derive error estimates corresponding
to autonomous systems driven by nc + 1 constant controls. Second, we use these
estimates and control affinity to deduce a result for general controls.
In accordance with the notation in Sect. 2 we define Lei

V
:= PVLei |V and also use this

symbol to denote the matrix representation of this linear operator w.r.t. to the basis
{ψ1, . . . , ψN } of V. Its approximation based on the data x0, . . . , xm−1 ∈ X will be
denoted by L̃ei

m .

Proposition 16 Let i ∈ {0, . . . , nc} be given and Assumption 15 hold. Then, for any
pair consisting of a desired error bound ε > 0 and a probabilistic tolerance δ ∈ (0, 1),
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there are a number of data points mi such that for any m ≥ mi , we have the estimate

P
(‖Lei

V
− L̃ei

m‖F ≤ ε
) ≥ 1 − δ.

The minimal amount of data mi is given by the formulas of Theorem 12.

Proof The claim follows immediately from applying Theorem 12. ��
Having obtained an estimate for the autonomous systems corresponding to the constant
controls ei , i = 0, . . . nc, we can leverage the control affinity of the system to formulate
the corresponding results for arbitrary controls. To this end, for any control u(t) =∑nc

i=1 αi (t)ei ∈ L∞(0, T ;Rnc ), we define the projected Koopman generator and its
approximation corresponding to the nonautonomous system with control u by

Lu
V
(t) := L0

V
+

nc∑
i=1

αi (t)
(Lei

V
− L0

V

)
,

L̃u
m(t) := L̃0

m +
nc∑

i=1

αi (t)
(L̃ei

m − L̃0
m

)
.

Theorem 17 Let Assumption 15 hold. Then, for any pair consisting of a desired error
bound ε̃ > 0 and probabilistic tolerance δ̃ ∈ (0, 1), prediction horizon T > 0, and
control function u ∈ L∞(0, T ;Rnc ) we have

ess inf t∈[0,T ] P
(‖Lu

V
(t) − L̃u

m(t)‖F ≤ ε̃
) ≥ 1 − δ̃,

provided that the number m of data points exceeds maxi=0,...,nc mi with mi defined as
in Proposition 16 with

ε = ε̃

(nc+1)(1+∑nc
i=1 ‖αi ‖L∞(0,T ))

and δ = 1 − δ̃
nc+1 .

Proof Again, we omit the subscript of the norm and set ‖ · ‖ = ‖ · ‖F . Using the result
of Proposition 16 and our choice of m0, we have

P

(
‖L̃0

m − L0
V
‖ ≤ ε̃

(nc+1)(1+∑nc
i=1 ‖αi ‖L∞(0,T ))

)
≥ 1 − δ̃

nc+1 ,

and for all i ∈ 1, . . . nc

P

(
‖Lei

V
− L̃ei

m‖ ≤ ε̃
(nc+1)‖αi ‖L∞(0,T )

)
≥ 1 − δ̃

nc+1 .

Then we compute for a.e. t ∈ [0, T ]

P

(
‖Lu

V
(t) − L̃u

m(t)‖ ≤ ε̃
)
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≥ P

(∥∥∥∥∥
(
1 −

nc∑
i=1

αi (t)

)(
L0
V

− L̃0
m

)∥∥∥∥∥+
nc∑

i=1

∥∥∥αi (t)
(
L̃ei

m − Lei
V

)∥∥∥ ≤ ε̃

)

≥ P

(∥∥∥∥∥
(
1 −

nc∑
i=1

αi (t)

)(
L0
V

− L̃0
m

)∥∥∥∥∥≤ ε̃
nc+1 ∧ nc∀

i=1
:
∥∥∥αi (t)

(
L̃ei

m−Lei
V

)∥∥∥≤ ε̃
nc+1

)
.

Next, we use Lemma 22 from “Appendix A.2” with d = nc + 1,

A0 =
{∥∥∥∥∥
(
1 −

nc∑
i=1

αi (t)

)(
L0
V

− L̃0
m

)∥∥∥∥∥ ≤ ε̃
nc+1

}
and Ai =

{∥∥∥αi (t)
(
L̃ei

m − Lei
V

)∥∥∥ ≤ ε̃
nc+1

}

for i = 1, . . . , nc. This yields

P

(
‖Lu

V
(t) − L̃u

m(t)‖ ≤ ε̃
)

≥ P

(∥∥∥∥∥
(
1 −

nc∑
i=1

αi (t)

)(
L0
V

− L̃0
m

)∥∥∥∥∥ ≤ ε̃
nc+1

)

+
nc∑

i=1

P

(
‖αi (t)

(L̃ei
m − Lei

V

)‖ ≤ ε̃
nc+1

)
− nc

≥ P

(
‖L̃0

m − L0
V
‖ ≤ ε̃

(1+∑nc
i=1 ‖αi ‖L∞(0,T ))(nc+1)

)

+
nc∑

i=1

P

(
‖L̃ei

m − Lei
V
‖ ≤ ε̃

(nc+1)‖αi ‖L∞(0,T )

)
− nc

≥ 1 − δ̃
nc+1 +

nc∑
i=1

(
1 − δ̃

nc+1

)
− nc = 1 − δ̃.

Taking the essential infimum yields the result. ��

In the previous result of Theorem 17, the data requirements depend on the chosen
control. If the values of the control function are constrained to a compact subset,
one can derive uniform data requirements w.r.t. the control, cf. our follow-up work
(Schaller et al. 2022). Finally, similar as in the previous section, we obtain a bound
on trajectories via Gronwall, if the state response is contained in X.

Corollary 18 Let Assumption 15 hold. Let T , ε > 0 and δ ∈ (0, 1), z0 ∈ R
N and

u ∈ L∞(0, T ;Rnc ) such that the solution of (SDE) is contained in X with probability
one. Then there is m0 ∈ N such that for m ≥ m0 the solutions z, z̃ of

ż(t) = Lu
V
(t)z z(0) = z0

˙̃z(t) = L̃u
m(t)z̃ z̃(0) = z0
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satisfy

min
t∈[0,T ]P

(‖z(t) − z̃(t)‖2 ≤ ε
) ≥ 1 − δ.

Proof See “Appendix A.3.” ��
As in Corollary 13, m0 can explicitly be computed by combining Theorem 17 with
the constants in Gronwall’s inequality.

We conclude this section with a final corollary regarding the optimality of the
solution obtained using an error-certified Koopman model. To this end, we consider
the optimal control problem with x0 ∈ X and a stage cost � : Rn × R

nc → R:

min
u∈L∞(0,T ;Rnc )

∫ T

0
�(x(t), u(t)) dt

s.t. ẋ =F(x) +
nc∑

i=1

Gi (x)ui , x(0) = x0.

(15)

In what follows, we compare the optimal value of the Koopman representation of (15)
projected onto the subspace of observables V with initial datum z0 = �(x0)

min
α∈L∞(0,T ;Rnc )

∫ T

0
�(P(z(t)), α(t)) dt

s.t. ż(t) =
[
L0
V

+
nc∑

i=1

αi (t)
(
Lei
V

− L0
V

)]
z(t), z(0) = z0,

(16)

to the optimal value of the surrogate-based control problem:

min
α̃∈L∞(0,T ;Rnc )

∫ T

0
�(P(z̃(t)), α̃(t)) dt

s.t. ˙̃z(t) =
[
L̃0

m +
nc∑

i=1

α̃i (t)
(
L̃ei

m − L̃0
m

)]
z̃(t), z̃(0) = z0,

(17)

where P maps a trajectory of observables to a trajectory in the state space, which in
practice is frequently realized by including the coordinates of the identity function in
the dictionary � of observables.

Corollary 19 Let T , ε > 0, δ ∈ (0, 1), z0 ∈ R
N , let J be locally Lipschitz continu-

ous and let Assumption 15 hold. Furthermore, let (z∗, α∗) be an optimal solution of
problem (16) such that the state response of (15) emanating from the control α∗ is
contained in X. Then there is m0 ∈ N such that for m ≥ m0 data points contained in
X, there exists a tuple (z̃, α̃) which is feasible for (17) such that for the cost, we have
the estimate

P

(∣∣∣∣
∫ T

0
�(P(z̃(t)), α̃(t)) − �(P(z∗(t)), α∗(t)) dt)

∣∣∣∣ ≤ ε

)
≥ 1 − δ.
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4 Numerical Examples

In this section, we first present numerical experiments on the derived error bound
for the Koopman generator and then discuss the implications for optimal control. In
particular, we emphasize that the bilinear Koopman model from Sect. 3 appears to
be the best approach for a straightforward transfer of predictive error bounds to the
control setting.

4.1 Generator Error Bounds: Ornstein–Uhlenbeck Process

Webegin by investigating the validity and accuracy of the error bounds for theGalerkin
matrices of a single SDE system, as derived in Proposition 10. To this end, we consider
the one-dimensional reversible Ornstein–Uhlenbeck (OU) process

dXt = −Xtdt + dWt . (18)

As the spectrum of the generator L of the OU process, as well as its invariant density,
is known in analytical form, we can exactly calculate the Galerkin matrices C, A, all
variances σ 2


i j
, and asymptotic variances σ 2


i j ,∞, if we consider a basis set comprised
of monomials, see “Appendix A.4.”

We consider monomials of maximal degree four (i.e., N = 4) and set the discrete
integration time step to	t = 10−3. For a range of different data sizesm and confidence
levels δ, we estimate the minimal error ε that can be achieved with probability 1 − δ

for a variety of quantities of interest. We calculate ε for all individual entries Ci j and
Ai j using inequality (6). Moreover, we also calculate ε for the Frobenius norm errors
in C and A by means of (5).

In order to compare our bound to the real error, we conduct 500 identical
experiments. For each experiment, we generate an independent simulation of OU
process (18), with initial condition drawn from the invariant distribution. For each
trajectory and each of the data sizes m considered, we estimate the matrices C̃m, Ãm .
We then calculate the absolute entry-wise errors to C and A, as well as the Frobenius
norm errors ‖C̃m −C‖F and ‖ Ãm − A‖F . Finally, we numerically compute the 1− δ-
percentile of each of these errors for all confidence levels δ considered above (i.e., the
error ε below which 450 of the 500 repeated experiments lie). These can be directly
compared to the probabilistic bounds ε obtained from our theoretical estimates.

The results are shown in Fig. 1. We can see in panels B and C that our estimates for
individual entries of theGalerkinmatricesC and A are quite accurate, as the data-based
error is over-estimated by only a factor of two to three. Our estimates for Frobenius
norm errors are less accurate, with approximately one order of magnitude difference
between theoretical and data-based errors. It can be concluded that the factor N in (5) is
too coarse in this example, as the actual Frobenius norm error only marginally exceeds
the maximal entry-wise error. Nevertheless, the qualitative behavior of all theoretical
error bounds is confirmed by the data.
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A

B C

Fig. 1 Numerical Results for one-dimensional OU Process (18). A: Exact invariant density μ in black,
compared to histograms of the first m points of an exemplary trajectory, for various data sizes m. B: Error
bounds for C corresponding to confidence level 1 − δ = 0.9. We show both the theoretical estimates
obtained in Proposition 10 (blue), as well as the data-based estimates obtained as described in the text (red).
We show the maximal error over all entries Ci j (dots), the average error over all matrix entries (squares),

and the Frobenius norm errors ‖C̃m − C‖F . C: The same as B for the matrix A

4.2 Extension to Control Systems

In this section, we illustrate our findings for deterministic as well as stochastic systems
regarding prediction and control. We compare the solution of the exact model to the
bilinear system

ż(t) =
[
L̃0

m +
nc∑

i=1

ui (t)
(
L̃ei

m − L̃0
m

)]
z(t)

z(t0) = ψ(x(t0)),

(19)

where nc is the dimension of the control input u. Besides bilinear model (19), we also
compare the true solution to the linear model obtained via eDMD with control, see
Proctor et al. (2016); Korda andMezić (2018a) for details. Optimality of the computed
trajectories from a theoretical standpointwill not be addressed here, as the error bounds
for L̃m are still too large. However, the principled approach is to choose an m such
that Corollary 19 holds.

For the numerical discretization, we use eDMD with a finite lag time to obtain
a discrete-time version of (19) in case of the Duffing system, which corresponds
to an explicit Euler discretization (Peitz et al. 2020). For the Ornstein–Uhlenbeck
example, we calculate the generator using gEDMD (Klus et al. 2020) and then obtain
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the resulting discrete-time version by taking the matrix exponential. In the case of
eDMD with control, we use the standard algorithm from Korda and Mezić (2018a),
which also results in a forward Euler version of the linear system ż = Âz + B̂u, i.e.,

zi+1 = Azi + Bui ,

z0 = ψ(x(t0)).
(20)

Remark 20 Note that one can drastically improve the predictive accuracy—in partic-
ular for longer time horizons—by introducing an intermediate project-and-lift step,
which only makes a difference if the space V spanned by the {{ψk}N

k=1} is not a
Koopman-invariant subspace (Proctor et al. 2018). Moreover, it becomes less and less
important themore the dynamics of the L̃m are truly restricted toV, or—alternatively—
if we are not interested in long-term predictions, for instance in the MPC setting.

Considering this intermediate step, the bilinear discrete-time systems become

ẑi = ψ(P(zi ))

zi+1 =
⎛
⎝K0 +

nc∑
j=1

(K j − K0)u j,i

⎞
⎠ ẑi

z0 = ψ(x(t0)),

(21)

where P is the projection of the lifted state z onto the full state x ∈ X. In the same
manner, the DMDc model reads

ẑi+1 = ψ(P(zi+1))

zi+1 = Âzi + Bui ,

z0 = ψ(x(t0)).

(22)

However, this comes at the cost of losing the bilinear or linear structure of the DMD-
based models, respectively.

4.2.1 Duffing Equation (ODE)

The first system we study is the Duffing oscillator:

dx
dt =

(
x2

−δx2 − αx1u − 2βx31

)
, x(t0) = x0. (23)

with α = −1, β = 1 and δ = 0. Note that the control does not enter linearly, which
is a well-known challenge for DMDc (Peitz et al. 2020).

As the dictionary ψ , we choose monomials with varying maximal degrees, and we
also include square and cubic roots for comparison. For the data collection process, we
simulate the system with constant control inputs u = 0 and u = 1 using the standard
Runge–Kutta scheme of fourth order with time step h = 0.005. As the final time, we
choose T = nlagh seconds, where nlag is the integer number of time steps we step
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Fig. 2 Comparison of ODE solution, the bilinear surrogate model and the linear model obtained via eDMDc
for system (23). Top row shows systems (19) and (20); bottom row uses project-and-lift versions (21) and
(22)

forward by the discrete-time Koopman operator model. We perform experiments for
both nlag = 1 and nlag = 10. Each trajectory yields one tuple (x, y) = (x(0), x(T )),
and we sample various numbers m of data points with uniformly distributed random
initial conditions over the rectangle [−1.5, 1.5]2.

Figure 2 shows the prediction accuracy for m = 10000 and nlag = 1, where
excellent agreement is observed for the bilinear surrogate model. In particular the
relative error

	x(t) = ‖x(t) − x̃(t)‖2
‖x(t)‖2 ,

where x̃(t) = P(z(t)) is the solution obtained via the surrogate model, is below 1
percent for the first second (i.e., 200 steps), whereas the eDMDc approach has a large
error from the start.

To study the influence of the size of the training data set, Fig. 3 shows boxplots
of the one-step prediction accuracy for various m. Each boxplot was obtained by
performing 20 trainings of a bilinear system according to the procedure described
above. After each training, a single time step was made for 1000 initial conditions
x0 ∈ [−1.5, 1, 5]2 and control inputs u ∈ [0, 1], both drawn uniformly. Consequently,
each boxplot consists of 2 ·104 data points. We see that, as expected, the training error
decreases for larger m. However, what is really surprising is that a saturation can be
observed already at m = 30 for an ODE system. Beyond that, no further improvement
can be seen, which demonstrates the advantage of (i) the linearity of the Koopman
approach and (ii) the usage of autonomous systems for the model reduction process.

Interestingly, the lag time between two consecutive data points has a critical impact
on the maximal accuracy in the control case. This is due to the fact that the bilinear
surrogate model is only exact for the Koopman generator (Peitz et al. 2020). For a
finite lag time, the bilinear model is a first-order approximation such that smaller lag
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Fig. 3 Left: Boxplot of the relative one-step prediction error over 20 training runs and 1000 different
samples (x0, u) in each run for a dictionary of monomials up to degree at most five and nlag = 1. Right:
The influence of the lag time as well as the control input on the mean accuracy (the dashed line with triangle
symbols corresponds to the left plot). We see that the lag time plays an important role in the control setting

Fig. 4 Mean relative one-step prediction errors for various dictionaries and data set sizes m

times are advantageous. Nevertheless, the accuracy still significantly supersedes the
eDMDc approach.

Another interesting observation can be made with respect to the choice of the
dictionaryψ . Figure 4 shows a comparisonof themean errors (analogous to the red bars
in Fig. 3 for various dictionaries. We observe excellent performance for monomials
with degree three or larger. The addition of roots of x is not beneficial at all, and in
particular, smaller dictionaries are favorable in terms of the data requirements, which
is in agreement with our error analysis and which was also reported in Peitz and Klus
(2020).
Next, we study the stabilization of system (23) for h = 0.01 and the final time T = 1.5.
Using the time discretization as above and a straight-forward single-shooting method,
this yields a 150-dimensional optimization problem similar to Problem (17) from
Corollary 19:

min
u

∫ 5

0
‖P(z(t)) − x ref(t)‖2

s.t. (19)

(24)
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Fig. 5 Open-loop control performance (stabilization of the origin) using the true ODE model as well as the
bilinear andDMDc surrogatemodels. Top row shows systems (19) and (20); bottom rowuses project-and-lift
versions (21) and (22)

where x ref is the reference trajectory to be tracked. Figure 5 demonstrates the perfor-
mance for x ref = 0 with models using M = 5 and only m = 200 training samples
– 100 for each model in the bilinear setting and 200 for eDMDc. We see very good
performance for the bilinear system even without the intermediate projection step. In
contrast, the eDMDc approximation fails for System (23), even when initializing with
the optimal solution from the full system.

4.2.2 Ornstein–Uhlenbeck Process (SDE)

For the stochastic setting, we consider an Ornstein–Uhlenbeck process with a control
input:

dXt = −α(u Xt )dt +
√
2β−1dWt . (25)

with α = 1, β = 2 and u(t) ∈ [0, 1]. The system is simulated numerically using
an Euler-Maruyama integration scheme with a time step of 10−3 as in Sect. 4.1.
For both systems, we calculate the Koopman operator corresponding to u = 0 and
u = 1, respectively, using the gEDMD procedure presented in Klus et al. (2020) with
monomials up to degree five.We then calculate the corresponding Koopman operators
for the time step h = 0.05 using the matrix exponential.

To study the prediction performance (cf. Fig. 6), we proceed in the same way as for
the Duffing system, except that we now compare the expected values, approximated by
averaging over 100 SDE simulations. The results are very similar to the deterministic
case, where the performance of both surrogate modeling techniques is comparable
when the control enters linearly, and very poor for eDMDc otherwise. Even though
the Ornstein–Uhlenbeck process is stochastic, the linearity is highly favorable for the
data requirements. We do not observe any considerable deterioration even in the very
low data limit.
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Fig. 6 Prediction accuracy for the expected value of the Ornstein–Uhlenbeck process (approximated by
averaging over 100 simulations) of the bilinear system and eDMDc, respectively

Fig. 7 Control of the expected value of the Ornstein–Uhlenbeck process (approximated by averaging over
100 simulations using the optimal control input shown in the bottom plots). In the SDE-based control, we
have used 20 simulations in each objective function evaluation

Finally, in the control setting, we aim at tracking the expected value E[Xt ], which
is precisely the quantity that is predicted by the Koopman operator. Thus, Problem
(24) can directly be applied to SDEs as well. In order to compare the results to the
full system, we average over 20 simulations in the evaluation of the objective function
valuewhen using the SDE.However, this appears to be insufficient, as the performance
is inadequate, cf. Fig. 7. The bilinear surrogate model, on the other hand, shows very
good performance with a small amount of m = 100 training data points.
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5 Conclusions

Wepresented thefirst rigorously derivedprobabilistic bounds on thefinite-data approx-
imation error for the Koopman generator of SDEs and nonlinear control systems.
Furthermore, by using slightly more advanced techniques from probability theory,
we also relaxed the assumption of i.i.d. data invoked in Zhang and Zuazua (2021) in
the ODE setting. Moreover, we also provided an analysis for the error propagation to
estimate the prediction accuracy in terms of the data size. A novelty for SDEs and in
the control setting is that our bounds explicitly depend on the number of data points
(and not only in the infinite-data limit). Further, the proposed techniques provide the
theoretical foundation for the Koopman-based approach (Peitz et al. 2020) to control-
affine systems, which seems to be superior for control and particularly well-suited for
MPC, since it avoids the curse of dimensionality w.r.t. the control dimension. In future
work, we will focus on the application of the derived bounds in a optimal and predic-
tive control, in particular in combination with the recently obtained (control-uniform)
projection error bounds of our follow-up work (Schaller et al. 2022).
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Appendix

A.1 Norm of the IsomorphismV � R
n

Proposition 21 Let V = span{{ψ j }N
j=1} ⊂ L2

μ(X), B ∈ L(V,V) and B ∈ R
n×n be

its corresponding matrix representation. Then

√
λmin(C)
λmax(C)

‖B‖2 ≤ ‖B‖L(V,V) ≤
√

λmax(C)

λmin(C)
‖B‖2

where Ci, j = 〈ψi , ψ j 〉L2
μ(X).

Proof This follows from the identity

∥∥∥∥∥
n∑

i=1

αiψi

∥∥∥∥∥
2

L2
μ(X)

=
N∑

i, j=1

αiα j 〈ψi , ψ j 〉L2
μ(X) = α�Cα,

which shows the equivalence of the vector norms. This induces the desired equivalence
of the operator norms. ��
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A.2 A Technical Lemma

Lemma 22 Let Ai , i = 1, . . . , d, be measurable sets. Then

P

(
d⋂

i=1

Ai

)
=

d∑
i=1

P(Ai ) −
d−1∑
i=1

P

⎛
⎝Ai ∪

d⋂
j=i+1

A j

⎞
⎠ .

Moreover, if P (Ai ) ≥ 1 − δ for all i = 1, . . . , d, then

P

(
d⋂

i=1

Ai

)
≥ 1 − dδ.

Proof Inductively applying the classical formula

P (A1 ∩ A2) = P(A1) + P(A2) − P(A1 ∪ A2)

yields

P

(
d⋂

i=1

Ai

)
= P

(
A1 ∩

d⋂
i=2

Ai

)
= P(A1) + P

(
d⋂

i=2

Ai

)
− P

(
A1 ∪

d⋂
i=2

Ai

)

=
d∑

i=1

P (Ai ) −
d−1∑
i=2

P

⎛
⎝Ai ∪

d⋂
j=i+1

A j

⎞
⎠− P

(
A1 ∪

d⋂
i=2

Ai

)

=
d∑

i=1

P (Ai ) −
d−1∑
i=1

P

⎛
⎝Ai ∪

d⋂
j=i+1

A j

⎞
⎠ ,

which proves the first claim. The second claim follows by estimating the first sum by
d(1 − δ) from below and the second sum by −(d − 1) from below. ��

A.3 Proof of the Error Bound on the Trajectories

Lemma 23 Let z and z̃ solve (9) and (10), respectively. Then for all t ≥ 0

‖z(t) − z̃(t)‖2 ≤ ‖L̃m − LV‖2‖z̃‖L1(0,t;RN )e
t‖LV‖2
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Proof Denoting e = z − z̃, subtracting (10) from (9) and integrating over a time
interval [0, t] with t ≥ 0 we obtain that

e(t) =
∫ t

0
LVz(s) − L̃m z̃(s) ds

=
∫ t

0
LVe(s) −

(
L̃m − LV

)
z̃(s) ds

This implies using Gronwall’s inequality, cf. Chicone (2006, Theorem 2.1), that

‖e(t)‖2 ≤
∫ t

0
‖LV‖2‖e(s)‖2 + ‖L̃m − LV‖2‖z̃(s)‖2 ds

≤ et‖LV‖2
∫ t

0
‖L̃m − LV‖2‖z̃(s)‖2 ds

= et‖LV‖2‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

��
Proof (Corollary 13) Using the bound of Lemma 23 we obtain

‖z(t) − z̃(t)‖2 ≤ ‖L̃m − LV‖2tet‖L̃m‖2et‖LV‖2

= t‖L̃m − LV‖2e
t
(
‖LV‖2+‖L̃m‖2

)
.

We compute

P (‖z(t)− z̃(t)‖2 ≤ ε)

≥ P

(
t‖L̃m − LV‖2et‖LV‖2et‖L̃m‖2‖z0‖ ≤ ε

)

≥ P

(
t‖L̃m − LV‖2e2t‖LV‖2et‖L̃m−LV‖2‖z0‖ ≤ ε

)

≥ P

(
T ‖L̃m − LV‖2e2T ‖LV‖2eT ‖L̃m−LV‖2‖z0‖ ≤ ε

)

By Theorem 12 and ‖ · ‖2 ≤ ‖ · ‖F , for any ε̃ we can choose m0 such that

P

(
‖L̃m − LV‖2 ≤ ε̃

)
≥ 1 − δ. Hence, there is m0 only depending on T , z0, LV

and ε such that for any t ≥ 0

P (‖z(t) − z̃(t)‖2 ≤ ε) ≥ 1 − δ.

Taking the minimum over all t ∈ [0, T ] proves the claim.

Proof (Corollary 18) This proof follows with obvious modifications in the proof of
Corollary 23 using the bound on then error of the time-dependent generators of The-
orem 17.
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Corollary 24 If the Koopman semigroup generated by LV is bounded by M, then

‖z̃(t) − z(t)‖2 ≤ M‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

If it is exponentially stable then

‖z̃(t) − z(t)‖2 ≤ Mc‖L̃m − LV‖2‖z̃‖L p(0,t;RN )

for any 1 ≤ p ≤ ∞ with M ≥ 1 and c = c(p) ≥ 0 independent of t . If additionally
the semigroup generated by L̃m is exponentially stable, ‖z̃(t)− z(t)‖2 can be bounded
uniformly in t ≥ 0.

Proof Subtracting (10) from (9) and denoting e(t) = z̃(t) − z(t) yields the system

ė(t) = LVe(t) + (L̃m − LV)z̃(t).

Denoting byKt
V
the Koopman semigroup generated by LV yields, using the variation

of constants formula

e(t) =
∫ t

0
Kt−s

V

(
L̃m − LV

)
z̃(s) ds

and hence

‖e(t)‖2 ≤
∫ t

0
‖Kt−s

V
‖2‖L̃m − LV‖2‖z̃(s)‖2 ds.

If Kt
V
is bounded by M , i.e., ‖Kt

V
‖ ≤ M , we have

‖e(t)‖2 ≤ M‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

If Kt
V
is exponentially stable, i.e., ‖Kt

V
‖2 ≤ Me−ωt , we obtain

‖e(t)‖2 ≤ Mc‖L̃m − LV‖2‖z̃‖L p(0,t;RN )

for any 1 ≤ p ≤ ∞ with c = c(p, ω). If additionally, the semigroup generated by L̃m

is exponentially stable implying that ‖z̃(t)‖2 ≤ M̃e−ω̃t‖z0‖2, this upper bound can
be bounded uniformly in t . ��

A.4 Analytical Expressions for the OU Process

For one-dimensional SDE (18), the Koopman generator is given by:

Lφ = −xφ′(x) + 1

2
φ′′(x).
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The eigenvalues of the generator are given by negative integers κl = −l, eigenvalues
of the Koopman operator are their exponentials, as usual, λl(t) = e−lt . The corre-
sponding eigenfunctions are given by scaled physicist’s Hermite polynomials. They
are orthonormal with respect to the inner product with weight functionμ, which is the
density of a normal distribution with variance one half, yielding the relations:

μ(x) = 1√
π
exp(−x2), ψl = 1√

2l(l − 1)! Hl(x), 〈Hl , Hm〉μ = 2l l!δlm . (26)

The monomial basis can be recovered from eigenfunction basis ψi by the representa-
tion formula:

xn = n!
2n

� n
2 �∑

k=0

1

k!(n − 2k)! Hn−2k(x). (27)

For a basis set comprised ofmonomials up tomaximal degree N , theGalerkinmatrices
C and A can be obtained as the moments of the normal distribution with variance 0.5:

Ci j =
{

(i+ j)!
2i+ j ((i+ j)/2)! (i + j) even,

0 (i + j) odd,
Ai j =

{
− i j

2
(i+ j−2)!

2i+ j−2((i+ j−2)/2)! (i + j) even,

0 (i + j) odd.

For their numerical estimation, we consider centered random variables:

φi j (x) = xi x j − Ci j for C, φi j (x) = − i j

2
xi−1 x j−1 − Ai j for A.

We calculate the asymptotic variance of the scalar random variable φi j if it is defined
by either of the two expressions above. We also introduce the quantity n := i + j for
C or n := i + j −2 for A. The analytical expressions for Ci j , Ai j above exactly equal
the terms corresponding to H0 in the general expansion for the monomial xn in (27).
As the random variables φi j are centered, no contribution from H0 is left. Thereby,
we obtain the decomposition for φi j (up to the factor − i j

2 for estimation of A):

φi j = xn − E
μ[xn] = n!

2n

� n
2−1�∑
k=0

1

k!(n − 2k)! Hn−2k(x). (28)
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Next, we calculate matrix elements with the Koopman operator at lag time l	t by
combining (28) with orthogonality relation (26):

〈φi j , Kl	t φi j 〉μ = (n!)2
22n

� n
2−1�∑
k=0

1

(k!(n − 2k)!)2 e−(n−2k)l	t 2n−2k(n − 2k)!

= (n!)2
22n

� n
2−1�∑
k=0

2n−2k

(k!)2(n − 2k)!e−(n−2k)l	t .

Finally, by setting qk = e−(n−2k)	t , we calculate the asymptotic variance according
to the result in Lemma 6 (note that the contribution for l = 0 appears only once, and
that the result needs to be multiplied by 1

4 i j for the estimation of A):

σ 2
φi j ,∞ = 〈φi j , φi j 〉μ + 2

∞∑
l=1

〈φi j , Kl	t φi j 〉μ

= (n!)2
22n

� n
2−1�∑
k=0

2n−2k

(k!)2(n − 2k)!

[ ∞∑
l=0

ql
k +

∞∑
l=1

ql
k

]

= (n!)2
22n

� n
2−1�∑
k=0

2n−2k

(k!)2(n − 2k)!
[

1

1 − qk
+ qk

1 − qk

]

= (n!)2
22n

� n
2−1�∑
k=0

2n−2k

(k!)2(n − 2k)!
1 + qk

1 − qk
.
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