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ABSTRACT
Slow kinetic processes in molecular systems can be analyzed by computing the dominant eigenpairs of the Koopman operator or its generator.
In this context, the Variational Approach to Markov Processes (VAMP) provides a rigorous way of discerning the quality of different approx-
imate models. Kernel methods have been shown to provide accurate and robust estimates for slow kinetic processes, but they are sensitive to
hyper-parameter selection and require the solution of large-scale generalized eigenvalue problems, which can easily become computationally
demanding for large data sizes. In this contribution, we employ a stochastic approximation of the kernel based on random Fourier features
(RFFs) to derive a small-scale dual eigenvalue problem that can be easily solved. We provide an interpretation of this procedure in terms of a
finite, randomly generated basis set. By combining the RFF approach and model selection by means of the VAMP score, we show that kernel
parameters can be efficiently tuned and accurate estimates of slow molecular kinetics can be obtained for several benchmarking systems, such
as deca alanine and the NTL9 protein.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0162619

I. INTRODUCTION

The automated extraction of essential information about the
thermodynamic and kinetic properties of molecular systems from
large-scale computer simulations remains one of the major open
problems in computational physics and chemistry to this day. The
challenge consists of processing very long time series of high-
dimensional data in such a way that relevant features of the molecu-
lar system are determined automatically, with limited user input or
intervention. The precise definition of what is regarded as relevant
depends on the context, but in many applications, the determina-
tion of slow relaxation processes and their associated metastable sets
is among the most important features to be detected. This applies,
for example, to protein folding, ligand binding, or protein–protein
association.1–3

Let us highlight two milestones that have shaped the field in
the last two decades: The first was the inception of Markov State
Models (MSMs) in the late 1990s and early 2000s,4–6 which allowed

for the construction of easily interpretable discrete kinetic models
from which a wealth of information could be extracted. The second
milestone was the variational approach to conformational dynam-
ics (VAC) for reversible systems7,8 and its extension, the variational
approach to Markov processes (VAMP),9 which provided a rigor-
ously defined scalar objective function (called the VAMP score)
to assess the quality of kinetic models. Combined, these develop-
ments have led to a standard workflow for the construction of
MSMs, usually consisting of a linear dimensionality reduction using
time-lagged independent component analysis (TICA),10 geometric
clustering, as well as MSM estimation and validation.11,12 It was also
shown that MSMs and the VAC are closely related to the Koopman
operator framework13,14 and, in particular, the extended dynamic
mode decomposition (EDMD) algorithm,15,16 which have primarily
emerged in the analysis of fluid dynamics and related fields. The
Koopman framework is therefore a unifying theme for the construc-
tion of kinetic models. Extensions of the EDMD algorithm can also
be used to approximate the generator of dynamical systems [e.g., the

J. Chem. Phys. 159, 074105 (2023); doi: 10.1063/5.0162619 159, 074105-1

© Author(s) 2023

 08 O
ctober 2023 14:32:31

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0162619
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0162619
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0162619&domain=pdf&date_stamp=2023-August-18
https://doi.org/10.1063/5.0162619
https://orcid.org/0000-0003-2444-7889
https://orcid.org/0000-0002-9672-3806
mailto:nueske@mpi-magdeburg.mpg.de
mailto:S.Klus@hw.ac.uk
https://doi.org/10.1063/5.0162619


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Kolmogorov backward operator for stochastic differential equations
(SDEs)], as shown in Ref. 17.

Despite the remarkable success of MSMs, the construction pro-
cess remains somewhat unsatisfactory, at least from a theoretical
perspective. The initial TICA step presupposes that there is a kinet-
ically informative linear subspace of the initial set of descriptors
used for MSM building. In order to move beyond this requirement,
algorithms based on deep neural networks (DNNs) were introduced
in recent years,18,19 allowing one to learn in one step the com-
plete non-linear transformation from raw atomic coordinates to
low-dimensional features that optimize the VAMP score. Both the
MSM construction process (including state definition) and neural
networks require a non-linear optimization step, which is typically
solved by means of stochastic algorithms. A significant number of
hyper-parameters need to be tuned in both cases, such as network
architecture, network depth, and height for DNNs, or number of
cluster centers, number of iterations, convergence threshold, etc. for
clustering-based MSMs.

A different avenue that has been considered is to employ
reproducing kernels, which have long been known in machine
learning20,21 as a powerful non-linear model class with rich theoreti-
cal properties. Kernel methods have also been demonstrated in many
applications to be fairly robust if the available data are only small- to
medium-sized. Kernel-based versions of EDMD were suggested in
Refs. 22–24 and applied to high-dimensional molecular simulations
in Ref. 25. Extracting slow timescales from kernel representations
requires the solution of a large-scale generalized eigenvalue problem,
where the size of the matrix depends on the number of snapshots.
Even for moderate data sizes, the solution to this problem can be
challenging. Moreover, although kernel methods usually require
only a few hyper-parameters (such as the bandwidth of the hugely
popular Gaussian kernel), these need to be tuned accurately, which
requires solving the above-mentioned eigenvalue problem many
times, which can be prohibitively time-consuming.

In this work, we show that kernel methods can be made
tractable for the analysis of molecular kinetics by employing Random
Fourier Features (RFFs),26 a well-known low-rank approximation
technique for kernel matrices, to convert the original large-scale
eigenvalue problem into a much smaller one that can be easily
solved. We derive the associated small-scale matrix problem both
for the Koopman operator and its generator and show that this
approach can be interpreted as applying EDMD with a specific ran-
domly chosen basis set. We demonstrate that the VAMP score can
be effectively used for hyper-parameter tuning of the kernel method.
The combination of these ideas leads to an efficient approxima-
tion algorithm that is robust with respect to the data size and the
stochastic Fourier feature selection. Therefore, our method presents
a promising new direction for the automated analysis of molecular
kinetics.

The remainder of this paper is structured as follows: In Sec. II,
we review elements of the Koopman formalism, the EDMD approx-
imation algorithm, reproducing kernel Hilbert spaces (RKHSs), and
Koopman modeling using RKHSs. Then, in Sec. III, we present our
main contribution, an approximation algorithm for the Koopman
operator or generator based on Random Fourier Features. Further
computational details, especially regarding model selection, are dis-
cussed in Sec. IV, while applications to benchmarking problems in
molecular dynamics (MD) are shown in Sec. V.

II. THEORETICAL BASICS
We will briefly introduce the stochastic Koopman operator

and its generator, as well as numerical methods to estimate these
operators and their spectral properties from data.

A. Stochastic dynamical systems
Computer simulations are routinely used to explore the ther-

modynamics and kinetics of molecular systems. Many available
implementations of molecular dynamics (MD) can be described as
a stochastic process {Xt}t≥0, where t is the time and Xt ∈ X ⊂ Rd is
the state of the system at time t. In particular, a widely used model
in this context is given by stochastic differential equations (SDEs) of
the form

dXt = F(Xt) dt +G(Xt) dWt , (1)

where F : Rd → Rd and G : Rd → Rd×d are the vector- and matrix-
valued fields, respectively, called the drift and diffusion of the SDE,
and Wt is the d-dimensional Brownian motion. The covariance
matrix of diffusion is denoted by

a(x) ∶= G(x)G(x)⊺. (2)

As far as thermodynamics is concerned, the primary goal of
molecular simulations is to sample the Boltzmann distribution,

dμ(x) ∼ exp (−βV(x)) dx, (3)

where V is the potential energy at position x and β−1 = kBT is the
inverse temperature. Most simulation protocols are built to achieve
this goal, i.e., the Boltzmann distribution is invariant, and long time
averages converge to spatial averages with respect to μ (ergodicity).
A standard example is Brownian or overdamped Langevin dynamics,

dXt = −
1
γ
∇V(Xt) dt +

√
2γ−1β−1 dWt (4)

with the friction parameter γ.

B. Koopman operator and generator
When it comes to inferring kinetic information about Xt , sig-

nificant progress has been made in recent years by considering an
operator-based approach to the statistics of the stochastic process
Xt . For a fixed lag time t ≥ 0, the Koopman operator13 𝒦t acts on a
function ϕ : X→ R by taking the conditional expectation,

𝒦tϕ(x) = Ex[ϕ(Xt)] = E[ϕ(Xt) ∣ X0 = x]. (5)

In other words, evaluation of the function 𝒦tϕ at x yields the
expectation of ϕ after starting the dynamics at x and evolving until
time t. The linear operators 𝒦t satisfy the semigroup equation
𝒦s+t =𝒦s𝒦t , which implies the existence of another linear oper-
ator ℒ, called the Koopman generator, such that the following linear
differential equation holds for the function ϕt =𝒦tϕ,
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∂

∂t
𝒦tϕ(x) =ℒ𝒦tϕ(x). (6)

For SDE dynamics of the form (1), stochastic calculus shows
that ℒ is a second-order differential operator, and we obtain the
Kolmogorov equation,

∂

∂t
ϕt(x) =

d

∑
i=1

F(i)(x) ∂

∂xi ϕt(x) +
1
2

d

∑
i, j=1

a(i, j)(x) ∂2

∂xi∂x j ϕt(x)

= F(x) ⋅ ∇ϕt(x) +
1
2

a(x) : ∇2ϕt(x)

=ℒϕt(x), (7)

where we used the colon notation for the Frobenius inner prod-
uct between matrices, i.e., A : B = ∑i,j A(i, j)B(i, j). For overdamped
Langevin dynamics, the generator is given by

ℒOD = −
1
γ
∇V ⋅ ∇ + γ−1β−1Δ. (8)

We will summarily refer to the Koopman operators or the gen-
erator as dynamical operators for the dynamical system Xt . If the
dynamics are reversible with respect to the invariant distribution μ,
then the generator ℒ is symmetric with respect to the inner product,

⟨ϕ1, ϕ2⟩μ = ∫X
ϕ1(x) ϕ2(x) dμ(x). (9)

As a consequence, all eigenvalues of the generator ℒ are real-valued
and non-positive, i.e., for all solutions of the equation,

ℒψi = κi ψi, (10)

we have κi ≤ 0. An object of prime interest for molecular kinet-
ics are low-lying eigenvalues 0 ≤ −κi ≪ 1, as these encode slow
motions corresponding to metastable behavior encountered in many
examples of molecular systems.6,27 The connection between close-
to-zero eigenvalues and metastability is also apparent in the fact that
eigenfunctions of the generator are also eigenfunctions of the Koop-
man operator at any t, with eigenvalue λi(t) = eκit . If ∣κi∣≪ 1, then
the corresponding eigenvalues λi(t) decay slowly, as expected for
metastable dynamics.

C. Finite-dimensional approximation
The basic data-driven approximation algorithm for the Koop-

man operator is called extended dynamic mode decomposition
(EDMD),15 and its adaptation to the generator is then called
gEDMD.17 Both methods require choosing a finite dictionary of
observable functions {ϕ1, . . . ,ϕn}. The projections of the dynamical
operators onto the linear span of these functions can be represented
by matrices,

Kt = G−1At , L = G−1AL (11)

with mass and stiffness matrices given by

G(i, j) = ⟨ϕi, ϕ j⟩μ, At(i, j) = ⟨ϕi, 𝒦tϕ j⟩μ,

AL(i, j) = ⟨ϕi, ℒϕ j⟩μ.
(12)

Given a long trajectory {x1, x2, . . . , xm+1} of the process Xt , the data-
based estimators for these matrices are given by

Ĝ(i, j) = 1
m

m

∑
l=1

ϕi(xl) ϕ j(xl),

Â t(i, j) = 1
m

m

∑
l=1

ϕi(xl) ϕ j(xl+1),

Â L(i, j) = 1
m

m

∑
l=1

ϕi(xl)ℒϕ j(xl),

(13)

where we assumed the time step between samples to equal t in the
formula for Â t . This is not required, in practice, if a sliding-window
estimator is used; see Refs. 12 and 28 for details.

For reversible dynamics, the stiffness matrix AL and its esti-
mator Â L above can be replaced by the following energy-like
expressions:17

AL(i, j) = −1
2∫X
∇⊺ϕi(x) a(x)∇ϕ j(x) dμ(x),

Â L(i, j) = − 1
2m

m

∑
l=1
∇⊺ϕi(xl) a(xl)∇ϕ j(xl).

(14)

The latter estimator only requires first-order derivatives and retains
the symmetry of AL even for finite data.

Eigenvalues of the dynamical operators can be approxi-
mated by diagonalizing the data-driven estimators K̂ t = Ĝ−1Â t and
L̂ = Ĝ−1Â L, or equivalently, by solving one of the generalized
eigenvalue problems,

Â tvi = λ̂i(t) Ĝ vi, Â Lvi = κ̂i Ĝ vi. (15)

D. Collective variables
For large molecular systems, the dictionary is typically defined

in terms of a set of lower-dimensional descriptors z ∈ RN , N ≤ d,
often called collective variables (CVs), such as intramolecular dis-
tances or angles. Formally, CVs are given by a smooth mapping
ξ : X→ RN . Choosing a dictionary {ϕ̃i}n

i=1 of functions depending
only on CV space, that is, ϕ̃i(x) = ϕi(ξ(x)), does not lead to any con-
ceptual changes to the EDMD approach. When approximating the
generator, the gEDMD method is straightforwardly adapted by com-
puting all x-derivatives in the definition of the generator using the
chain rule. This leads to a particularly elegant reformulation of the
symmetric estimator (14) in terms of an effective diffusion matrix,

aξ(x) = ∇⊺x ξ(x) a(x)∇x ξ(x), (16)

where∇xξ is the d ×N-dimensional Jacobian of the mapping ξ. The
symmetric estimator (14) then becomes

Â L(i, j) = − 1
2m

m

∑
l=1
∇⊺z ϕi(zl)aξ(xl)∇zϕ j(zl), (17)
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as shown in Ref. 17. Note that once the effective diffusion matrices
have been computed, only the basis functions and their derivatives
in CV-space are required.

E. Reproducing kernel Hilbert space
A critical modeling decision for the (g)EDMD approach is

the choice of the dictionary {ϕ1, . . . ,ϕn}. Recent works22–25 have
shown that accurate results, even for large systems, can be obtained
using methods based on reproducing kernel Hilbert spaces (RKHS)
generated by a kernel function k. These approaches lead to pow-
erful approximation spaces, yet they only depend on a few model
parameters.

A reproducing kernel Hilbert space (RKHS)21,29 is a Hilbert
space H with an inner product ⟨⋅, ⋅⟩H of continuous functions on
X, defined by a symmetric, positive-definite two-argument function
k(x, y), called the kernel. Each such kernel corresponds to a unique
RKHS.29 Given k, one can define a map from X into H, called the
feature map, by

Φ(x)(y) = k(x, y). (18)

Functions f in the RKHS then satisfy the reproducing property,

⟨ f , Φ(x)⟩H = f (x) ∀ f ∈ H. (19)

Example II.1. Arguably the most widely used kernel is the
Gaussian radial basis function (RBF) kernel,

kσ(x, y) = exp(− 1
2σ2 ∥x − y∥2) (20)

with bandwidth parameter σ > 0. On a periodic domain [−L, L]d, the
closely related periodic Gaussian kernel,

kp
σ(x, y) = exp(− 2

σ2

d

∑
i=1

sin2( Π
2L
(xi − yi))), (21)

analogously generates an RKHS of periodic functions.30 △

For many popular kernels, including the Gaussian RBF kernel,
the associated RKHS is infinite-dimensional and densely embedded
into the most relevant function spaces. Kernels, therefore, provide
powerful approximation spaces, reducing the problem of dictionary
selection to the choice of a single function, the kernel, and its hyper-
parameters, such as the bandwidth for the Gaussian RBF kernel.

F. RKHS representation of dynamical operators
Given a kernel k with RKHS H, the analogs of the matrices G,

At , and AL in Sec. II C are given by linear operators on H; see Refs.
23 and 24 for a derivation,

𝒢 f = ∫
X

f (x)Φ(x) dμ(x),

𝒜 t f = ∫
X
𝒦t f (x)Φ(x) dμ(x),

𝒜L f = ∫
X
ℒ f (x)Φ(x) dμ(x).

(22)

Here, Φ is the feature map again. The eigenvalue problem (15) then
turns into an infinite-dimensional generalized eigenvalue equation
for eigenfunctions ψi ∈ H,

𝒜 tψi = λi(t)𝒢ψi, 𝒜Lψi = κi𝒢ψi. (23)

Natural empirical estimators for the RKHS operators in (22) are
given by

𝒢 f = 1
m

m

∑
l=1

f (xl)Φ(xl), 𝒜 t f = 1
m

m

∑
l=1

f (xl+1)Φ(xl),

𝒜L f = 1
m

m

∑
l=1

ℒ f (xl)Φ(xl).
(24)

The range of these operators is in the linear span of the feature map
at the data sites: Hm = span{Φ(xl)}m

l=1. Therefore, it makes sense to
restrict these operators to the m-dimensional space Hm, which leads
to the matrix representations,

[KX](r, s) = k(xr , xs),
[Kt

X](r, s) = k(xr+1, xs),

[KL
X](r, s) = 1

2

d

∑
i, j=1

a(i, j)(xr)
∂2

∂xi∂x j k(xr , xs)

+
d

∑
i=1

Fi(xr)
∂

∂xi k(xr , xs)

(25)

and (23) can be replaced by a matrix generalized eigenvalue problem,

Kt
Xwi = λ̂i(t)KXwi, KL

Xwi = κ̂iKXwi. (26)

The derivatives in the definition of KL
X are taken with respect to

the first argument of the kernel function. It is important to note
that, as expected for a kernel method, assembling the matrices (25)
requires only kernel evaluations at the data sites, along with ker-
nel derivatives and coefficients of the SDE in the generator setting.
For reversible dynamics, there is again an alternative symmetric
formulation, which leads to the following Hermitian generalized
eigenvalue problem instead of (26),

Krev
X wi = κ̂iKXKXwi, (27)

Krev
X (r, s) = − 1

2m

m

∑
l=1
∇⊺k(xl, xr)a(xl)∇k(xl, xs).

The derivations of (25)–(27) were shown in Refs. 23 and 24; we
repeat them for the reader’s convenience in the Appendix.

The linear problems (26) and (27) represent large-scale gen-
eralized eigenvalue problems. Solving these problems efficiently for
large datasets is one of the central challenges common to most appli-
cations of kernel methods. In Sec. III, we present an approach based
on a randomized low-rank representation obtained from the Fourier
transformation of the kernel function.

III. LOW-RANK REPRESENTATIONS OF KERNEL
EIGENVALUE PROBLEMS

In this section, we will present our main contribution: an
approach to solving the generalized eigenvalue problems (26) and
(27) using a randomized low-rank decomposition.
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A. Random Fourier features
Random Fourier Features (RFFs) have been introduced in Ref.

26 as a low-rank approximation framework for large kernel matri-
ces. The basis for this approach is Bochner’s theorem, stating that a
translation-invariant kernel k, which is normalized to k(x, x) = 1 for
all x, possesses the following stochastic representation:31

k(x, y) = 1√
2π∫Rd

e−i(x−y)⊺ω dρ(ω) = Eω∼ρ[e−ix⊺ω e−iy⊺ω]. (28)

Here, ρ is a probability measure in frequency space, called the spec-
tral measure. This representation extends to the derivatives of the
kernel function, namely

Dαk(x, y) = Eω∼ρ[(−iω)αe−ix⊺ω e−iy⊺ω], (29)

where α ∈ Nd is the multi-index and ωα = (ω1)α(1) . . . (ωd)α(d). The
derivatives in the above expression are again taken with respect to
the first argument. For the Gaussian RBF kernel with bandwidth σ,
the spectral measure is also Gaussian with bandwidth σ−1. For the
periodic Gaussian kernel, the spectral measure is discrete, supported
on all wave vectors π

L k for k ∈ Zd, with probabilities,

ρ(π
L

k) =
d

∏
j=1

Ik( j)(σ−2)e−σ
−2

, (30)

where Ik is the modified Bessel function of the first kind; see Ref. 32.
Thus, drawing independent samples from the spectral measure is
easily accomplished for many popular kernel functions.

B. Representation of kernel matrices
We apply the RFF representation to the generalized eigenvalue

problems (26) and (27) by substituting it into the kernel matrices
KX , Kt

X , KL
X given by (25). We again denote samples in real space

(in the form of a long trajectory) by {xl}m+1
l=1 . Instead of using one

long trajectory, it would also be possible to extract a training dataset
{(xl, yl)}m

l=1 from many short trajectories; see Ref. 28 for details.
Additionally, we assume there are p samples {ωu}p

u=1 in frequency
space, sampled from the spectral measure ρ. Replacing expectation
values with finite-sample averages, we obtain

KX = [k(xr , xs)]r,s = [E
ω∼ρ[e−ix⊺r ω e−ix⊺s ω]]

r,s

≈ 1
p
[MMH]

r,s
,

Kt
X = [k(xr+1, xs)]r,s ≈

1
p
[MtMH]

r,s
(31)

with RFF feature matrices,

M = [e−ix⊺r ωu]
r,u

, Mt = [e−ix⊺r+1ωu]
r,u

. (32)

That is, the rows of M correspond to the data points, and the
columns of M correspond to the randomly sampled features.

When approximating the generator, we use the representation of
derivatives given in (29), to find

KL
X =
⎡⎢⎢⎢⎢⎣

1
2

d

∑
i, j=1

a(i, j)(xr)
∂2

∂xi∂x j k(xr , xs)

+
d

∑
i=1

F(i)(xr)
∂

∂xi k(xr , xs)
⎤⎥⎥⎥⎥⎦r,s

≈ 1
p

p

∑
u=1

⎡⎢⎢⎢⎢⎣

⎛
⎝
−1

2

d

∑
i, j=1

a(i, j)(xr)ωu(i)ωu( j)

− i
d

∑
i=1

F(i)(xr)ωu(i)
⎞
⎠

e−ix⊺r ωu e−ix⊺s ωu

⎤⎥⎥⎥⎥⎦r,s

= 1
p
[MLMH]

r,s
(33)

with generator feature matrix ML, which can be written compactly
using the Frobenius inner product as

ML = [(−1
2

a(xr) : (ωu ⊗ ωu) − iF(xr) ⋅ ωu)e−ix⊺r ωu]
r,u

. (34)

We will address the reversible case further below after analyzing the
RFF-based approximation in more detail. Together, (31) and (33)
provide low-rank approximations of the kernel matrices, which can
be easily assembled by the evaluation of complex exponentials.

C. Solution of the generalized eigenvalue problems
Let us now use the approximations (31) and (33) to solve the

generalized eigenvalue problems (26), which read (note that the
normalization 1

p can be omitted)

MtMHwi = λ̂i(t)MMHwi, MLMHwi = κ̂iMMHwi. (35)

If p ≤ m, we can employ a standard trick to express this equivalently
as a lower-dimensional eigenvalue problem. By defining vi =MHwi,
we can directly verify that

MHMtvi =MHMtMHwi = λ̂i(t)MHMMHwi

= λ̂i(t)MHMvi. (36)

The last equality shows that all non-zero eigenvalues of (35) can be
equivalently computed by the lower-dimensional dual problem,

MHMtvi = λ̂i(t)MHMvi, MHMLvi = κ̂iMHMvi. (37)

This p-dimensional generalized eigenvalue equation is the cen-
tral problem to be solved within the context of RFF-based kernel
approximation. If p is much smaller than m, (37) already leads to
computational savings compared to (26).

In fact, it is not even necessary to assemble the matrices in (37),
because the equation can be solved by operating only on the RFF
feature matrices M, Mt , ML. To this end, we apply a whitening trans-
formation, which is widely used within the context of (g)EDMD.
Using a truncated singular value decomposition (SVD) of M,
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M ≈ UΣWH (38)

and retaining r ≤ p components of the SVD, we obtain a linear trans-
formation T =WΣ−1, which eliminates the matrix on the right-hand
sides of (37),

THMHMT = Σ−1WHWΣUHUΣWHWΣ−1 = Idr×r. (39)

Applying the same transformation to the left-hand sides of (37) leads
to reduced matrices,

Rt = THMHMtT = UHMtWΣ−1,

RL = THMHMLT = UHMLWΣ−1.
(40)

It is then sufficient to diagonalize these reduced matrices in
order to solve (37). If the truncation rank of M is significantly smaller
than p, additional computational savings can be harnessed this way.
Algorithm 1 summarizes our solution method in compact form.

D. Interpretation as (g)EDMD problem
The transformation of the dual problem (37) to its reduced

form is completely analogous to what is called the whitening trans-
formation for (g)EDMD.28 This is not a coincidence. Consider a
finite dictionary defined by

ϕRFF(x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(x)
⋮

ϕp(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eix⊺ω1

⋮
eix⊺ωp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Using the notation of Sec. II C, the empirical mass and stiffness
matrices for this basis set are given by

Ĝ(u, v) = 1
m

m

∑
l=1

ϕu(xl) ϕv(xl )

= 1
m

m

∑
l=1

eix⊺l ωu e−ix⊺l ωv = 1
m
[MHM](u, v),

Â t(u, v) = 1
m
[MHMt](u, v),

Â L(u, v) = 1
m
[MHML](u, v),

(42)

which are precisely the constituent matrices in (37). Note that we
need to consider complex-valued observables at this point, leading
to complex conjugation of the second argument in inner products.
We conclude that the solution to the dual problem is equivalent to
the eigenvalue estimation based on (g)EDMD using a random dic-
tionary of complex plane waves. With this interpretation at hand, we
can also derive a convenient symmetric formulation for reversible
dynamics by replacing the estimator for Â L with its symmetric
version (14),

Â L(u, v) = − 1
2m

m

∑
l=1
∇⊺ϕu(xl)a(xl)∇ϕv(xl )

= − 1
2m

m

∑
l=1

ω⊺u a(xl)ωv eix⊺l ωu e−ix⊺l ωv. (43)

To compute the reduced matrix, we just have to apply the trans-
formation T from Sec. III C from the left and from the right,
i.e.,

RL = THÂ LT = Σ−1WHÂ LWΣ−1, (44)

resulting again in a symmetric estimator.

E. Computational effort
Let us break down the computational effort required for Algo-

rithm 1: The SVD of M requires 𝒪(mp2) operations. Assembling
the reduced matrix costs 𝒪(rpm) operations for the Koopman
operator. In the case of generator approximation, we obtain an
additional dependence on the dimension due to the required con-
traction of derivatives of the kernel function. We can upper-bound
the resulting effort as 𝒪(mp(d2 + r)) in the non-reversible case and
by 𝒪(m(rpd + r2d2)) in the reversible case. Note that this bound
assumes a dense and state-dependent diffusion field a; it reduces
to linear dependence on d for diagonal diffusions, such as over-
damped Langevin dynamics. Finally, the diagonalization of the
reduced matrix amounts to 𝒪(r3) floating point operations. Com-
paring this to the full kernel method, we see that the most drastic
computational savings will result from being able to choose p small
compared to m, as it reduces a factor 𝒪(m3) to 𝒪(mp2).

IV. METHODS
In this section, we will discuss aspects of the practical appli-

cation of our spectral RFF method and also introduce the systems
studied in the results section below. For the numerical examples,
we will use the Gaussian RBF kernel or its periodic counterpart for
periodic domains.

A. Model selection
Before we can apply Algorithm 1, we have to choose the num-

ber of features p, the truncation threshold for singular values, and as
many hyper-parameters as required by the kernel function (e.g., the
bandwidth for Gaussian RFF kernels). We select these parameters
by cross-validating the VAMP score metric on randomly selected
subsets of the data, as explained below. The only exception is the
truncation threshold for singular values of M. Here, we adopt the
rule that all singular values smaller than 10−4 times the largest sin-
gular value are discarded. This choice is based on prior experience
and works well in all considered examples.

The VAMP score metric is based on the Rayleigh variational
principle, which states that for reversible systems, the exact leading
K eigenfunctions are optimizers of the Rayleigh trace,

K−1

∑
i=0

λi(t) = max
ϕ0 ,...,ϕK−1

K−1

∑
i=0
⟨ϕi, 𝒦tϕi⟩μ

= max
ϕ0 ,...,ϕK−1

VS(ϕ0, . . . ,ϕK−1),

s.t. ⟨ϕi, ϕ j⟩μ = δi j. (45)

As the sum to be maximized on the right-hand side is a special case
of the slightly more general VAMP score introduced for Koopman
operators in Refs. 7 and 9 and for the Koopman generator in Ref. 33,
we label it VS in what follows. For the generator, the same varia-
tional principle holds, with λi(t) replaced by κi and 𝒦t replaced by
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ALGORITHM 1. RFF-based spectral approximation of the operator or generator.

Input: data matrix X = [x1, . . . , xm+1] ∈ Rd×(m+1),
kernel function k with spectral measure ρ,
number of features p, truncation rule for singular values.

Output: Approximate eigenpairs (λ̂i(t), ψ̂i) or (κ̂i, ψ̂i) of the dynamical operator.

1: Draw p samples {ωu}p
u=1 from the spectral measure ρ.

2: Form matrix M given by (32).
3: Non-reversible case: form matrix Mt or ML as in (32) or (33).
4: Compute the SVD of M and choose rank r according to the truncation rule: M ≈ UΣWH.
5: Form the reduced matrix Rt or RL according to (40) or (44).
6: Compute eigenpairs of the reduced problem Rtui = λ̂i(t)ui or RLui = κ̂iui.
7: Transform to original RFF basis: vi = Tui, ψ̂i(x) = vH

i ϕRFF(x).

ℒ. The variational principle also generalizes to non-reversible sys-
tems by considering singular functions instead of eigenfunctions.9
However, we only analyze reversible systems in what follows. The
VAMP score can be easily estimated upon replacing inner products
by their empirical estimators, as shown in Sec. II C. The maximal
VAMP score within a finite-dimensional model class can also be
straightforwardly computed; see again Ref. 7. In this way, we can
simply compare the maximal VAMP score obtained for each choice
of hyper-parameters, e.g., choice of kernel bandwidth σ and number
of Fourier features p, and choose the best.

To account for the estimation error stemming from the use
of finite data and also to avoid over-fitting, we employ a standard
cross-validation approach and first compute the optimal functions
ϕ0, . . . ,ϕK−1 for each model class on a random subsample of the
data (training data). We then recompute the VAMP score for the K-
dimensional space spanned by ϕ0, . . . ,ϕK−1 on the remaining data
(test data). This process is repeated ntest times, where ntest is either
10 or 20 below, and we choose the model class that optimizes the
test score on average. The ratio of training data to test data is always
chosen as a 75%/25% split.

B. Spectral analysis and clustering
The solution of the eigenvalue problem for the reduced matrix

R provides estimates of the leading eigenvalues λ̂i(t) or κ̂i, respec-
tively, and their associated eigenfunctions ψ̂i. The first point to note
is that (37) is a complex eigenvalue problem, so the eigenvectors
can be scaled by arbitrary complex numbers. Before analyzing the
eigenvectors, we simply apply a grid search over complex phase
factors to determine the one that minimizes the imaginary part of
all eigenvector entries and use the rescaled eigenvectors for further
analysis.

Second, we transform the eigenvalues of the Koopman operator
into implied timescales defined as

ti = −
t

log (λ̂i(t))
, (46)

which have units of time and can be interpreted as physical relax-
ation timescales for the i-th eigenmode of the Koopman opera-
tor. Since the timescales are independent of the lag time in the
absence of projection and estimation errors,34 we monitor the con-

vergence of implied timescales with increasing lag time t in order to
select an optimal lag time.11 We also compute the timescales when
approximating the generator; in this case, they are simply given by

ti = −
1
κ̂i

. (47)

In order to analyze metastable sets, we evaluate the top eigenfunc-
tions ψ̂i at all data points, and apply the spectral clustering method
PCCA (Perron-Cluster Cluster Analysis)35 to assign each data point
xl to each metastable set q with a degree of membership χq(xl),
which is a number between zero and one. We then identify data
point xl as part of metastable set q if χq(xl) ≥ 0.6, and the remaining
data points are treated as transition states.

C. Systems and simulation setups
We study four different examples in order to illustrate dif-

ferent aspects of the performance of the proposed method. The
first is overdamped Langevin dynamics (4) in a two-dimensional
model potential, which is a minor modification of the Lemon-Slice
potential,36 given in polar coordinates as

V(r,φ) = cos (4φ) + 10(r − 1)2 + 1 + 1
r
+ 1

cos φ
, (48)

see Fig. 1 for a visualization. We can easily generate large amounts of
simulation data by applying the standard Euler–Maruyama integra-
tor. The elementary simulation time step is set to Δt = 10−3. Friction
γ and inverse temperature β are both set to one. Reference implied
timescales are obtained from a Markov state model based on a k-
means discretization of the two-dimensional state space, using 50
discrete states and m = 105 data points.

The second system is molecular dynamics simulation data of
the alanine dipeptide in explicit water at a temperature of T = 300 K,
employing the Langevin thermostat. We generated a total of 1 ×
106 data points at 1 ps time spacing. Reference implied timescales
were computed by a Markov state model in the well-known two-
dimensional space of backbone dihedral angles ϕ and ψ, using a
30 × 30 box discretization and all 1 × 106 data points.

The third example is molecular dynamics simulation data of the
deca alanine peptide in explicit water at a temperature of T = 300 K;
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FIG. 1. Results for the Lemon-Slice potential. (a) Contour of the potential (48). (b) Negative VAMP score as a function of the kernel bandwidth for different data sizes m and
feature numbers p. (c) Leading non-trivial eigenvalues of the negative generator for m = 5000 and p = 50, as a function of the bandwidth. Black lines indicate the Markov
model reference values. (d) Decomposition into four metastable states based on eigenvectors for σ = 0.4, p = 50, and m = 5000. All error bars are based on 20 independent
simulations.

see Ref. 37 for a description of the simulation setup. The data com-
prises a total of 4 × 106 time steps at 1 ps time spacing. As reference
values, we refer to the MSM analysis presented in Ref. 38, which
is built on a 500-state k-means discretization after applying time-
lagged independent component analysis (TICA)10 in the space of the
peptide’s 16 backbone dihedral angles.

Finally, we re-analyze the 39-residue protein NTL9, which was
simulated on the Anton supercomputer by D. E. Shaw Research; see
Ref. 39 for details. The data comprises around 1.2 × 106 frames, cor-
responding to a time spacing of Δt = 2 ns. As a reference, we apply
linear TICA to the set of 666 minimal heavy atom inter-residue dis-
tances. We also rank these distances according to the fraction of
simulation time where a contact is formed, that is, the distance does
not exceed 0.35 nm; see Ref. 38, and calculate TICA models using
only the first [20, 100, 200, 300, 400, 500, 666] of these distances.

V. RESULTS
A. Lemon-Slice potential

We start by analyzing the Lemon-Slice potential (48), shown in
Fig. 1(a), which features four metastable states corresponding to the
wells of the potential energy. We use this system as a first test case for
approximating the generator ℒ due to the availability of all relevant
quantities in analytical form.

Figure 1(b) shows the VAMP score as a function of the band-
width for a selection of data sizes m and feature numbers p. We see
that while m = 1000 data points are not sufficient, for m = 5000 data
points, the score stabilizes for a range of bandwidths σ ∈ [0.3, 0.8]
and already attains optimal values for very small p. We confirm
this finding by plotting the first three non-trivial eigenvalues of

the generator, for m = 5000 and p = 50, as a function of the band-
width in Fig. 1(c). Indeed, accurate estimates for eigenvalues can
be obtained in the suggested regime of bandwidths. After calculat-
ing the eigenvectors of the reduced matrix for σ = 0.4 and applying
the PCCA analysis, we see that the metastable structure is perfectly
recovered; see Fig. 1(d). Thus, the VAMP score reliably guides the
hyper-parameter search toward a very efficient approximation of the
leading spectral components of this system.

B. Alanine dipeptide
For alanine dipeptide, we approximate the Koopman oper-

ator with lag time t, using the periodic Gaussian kernel on the
well-known two-dimensional reaction coordinate space given by the
dihedral angles ϕ and ψ. Figure 2(a) shows the familiar free energy
landscape of the system in the reaction coordinate space. For all RFF-
based approximations, we downsample the dataset to m = 20 000
points, corresponding to a time spacing of 50 ps. We apply the same
model selection protocol as before and find that a range of kernel
bandwidths σ ∈ [0.4, 1.0] can be stably identified as optimal in terms
of the VAMP score. We observe in Fig. 2(b) that again, a small num-
ber of Fourier features, p = 50, is sufficient to arrive at an optimal
VAMP score. We also confirm that the optimal parameter regime
is stable across different lag times. Note that the VAMP score nec-
essarily decreases with increasing lag time, as all eigenvalues but
λ0(t) decay exponentially with t. As shown in Fig. 2(c), the opti-
mal range of bandwidths indeed allows for accurate estimation of the
three leading implied timescales of the system. Further, we also ver-
ify that the metastable decomposition of the dihedral space into four
states is correctly recovered using the RFF model; see Fig. 2(d). The
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FIG. 2. Results for alanine dipeptide. (a) Free Energy (in kJ/mol) in two-dimensional dihedral space. (b) VAMP Score for selected feature sizes p and lag times t as a function
of the kernel bandwidth. (c) Implied timescales for t = 100 ps and p = 50 as a function of the bandwidth. (d) Metastable decomposition obtained for σ = 0.6, p = 50, and
t = 100 ps. The error bars for MSM timescales were generated using Bayesian transition matrix sampling.40

dramatic rank reduction for the kernel matrix achieved by using
a small number of Fourier features allows us to easily compute
eigenvalues and test scores for a broad range of parameters using
m = 20 000 data points in real space. Solving the same problem by
means of standard methods would be significantly more costly if the
same data size was used.

C. Deca alanine
We use the deca alanine example to demonstrate that, by means

of low-rank kernel methods, generator models can be efficiently
learned on a reaction coordinate space that is more than just one-
or two-dimensional and that dynamical hypotheses can be tested
this way. We project the system onto the space of its 16 interior
backbone torsion angles. The generator of full molecular dynamics
is not readily available in closed form. It is well known, however,
that if observed only in a subset of position space, many systems
driven by thermostatically controlled molecular dynamics behave
like reversible overdamped Langevin dynamics at long timescales.41

This can be rigorously shown for underdamped Langevin dynamics
by using the inverse friction constant as a re-scaling of time, leading
to overdamped dynamics in position space in the large friction limit.

For that reason, we set the full space diffusion matrix to 1
β

times the identity and employ our reversible estimator. The effective
diffusion (16) then turns into

aξ(z) = 1
β
∇ξ⊺(x)∇ξ(x), (49)

where∇ξ is the Jacobian of the mapping from Euclidean coordinates
to the peptide’s backbone dihedral angles, which can be evaluated
analytically. Note that this approach can be seen as a dynamical

hypothesis: we choose to model the position space dynamics as an
overdamped Langevin process and test if its projection onto the
dihedral angle space can recover all relevant features of the full MD
simulation.

We find in Fig. 3(a) that a kernel bandwidth of σ ∈ [2.0, 8.0]
leads to an optimal VAMP score for the projected generator. Using
about m = 1000 data points in real space and p = 300 Fourier fea-
tures is sufficient to obtain stable results, rendering the calculation
highly efficient. The optimality of this regime of bandwidths is
confirmed by plotting the first three non-trivial eigenvalues of the
generator, as shown in Fig. 3(b). We note that these eigenvalues
differ from those of the reference MSM by a constant factor. This
is due to the re-scaling of time inherent in assuming overdamped
Langevin dynamics in position space, rendering the effective dynam-
ics too fast. However, we also see in Fig. 3 that all slow eigenval-
ues are indeed re-scaled by the same factor. Moreover, the PCCA
analysis of the slowest eigenvectors obtained for the optimal RFF
model also recovers the metastable states of the deca alanine sys-
tem, corresponding to the folded and unfolded states as well as two
intermediates. The effective overdamped Langevin model learned
by the kernel method thus retains all major features of the original
molecular dynamics, up to the re-scaling of time.

D. NTL9
We use the NTL9 dataset to demonstrate once again the abil-

ity of the proposed method to efficiently and robustly analyze large
datasets. We downsample the available trajectory data to around
m = 15 000 data points at 200 ns time spacing. As mentioned ear-
lier, m = 15 000 is still a significant data size for kernel methods.
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FIG. 3. Results for the Koopman generator on the backbone dihedral angle space of the deca alanine peptide. (a) Negative VAMP score for selected data sizes m and feature
sizes p as a function of the kernel bandwidth. (b) Eigenvalues of the negative generator for m = 1000 and p = 300 as a function of the bandwidth. The reference MSM
results are shown in black. Re-scaling MSM eigenvalues by the average ratio between optimal RFF and MSM eigenvalues leads to the magenta lines. (c)–(f) Representative
structures for each of the four PCCA states based on the RFF model at m = 1000, p = 300, and σ = 4.0. The error bars for MSM eigenvalues (barely visible) were generated
using Bayesian transition matrix sampling.40

We project the MD simulations onto the 666-dimensional space of
minimal heavy atom inter-residue distances. It is known from pre-
vious publications that these coordinates capture the folding process
of NTL9 very well.38,42 Indeed, just using linear TICA on the top-
ranked 300 distances allows for an accurate estimation of the slowest
implied timescale, t1, associated with the folding process; see the top
green line in Fig. 4(b).

Figure 4(a) shows that using Gaussian bandwidth parameters
σ ∈ [10, 50] can be identified as optimal in terms of the VAMP score,

again across different lag times. In Fig. 4(b), we first compare the
slowest timescale t1 obtained for σ = 15 as a function of the lag time
for different feature numbers p (blue lines). We see that already
for p ≥ 300, satisfactory convergence of t1 with t can be obtained,
reducing the computational cost by about a factor of two thou-
sand compared to the full kernel eigenvalue problem. The folded
and unfolded states of the protein can also be identified correctly
using these parameters, see Fig. 5. Interestingly, timescale conver-
gence improves with p in about the same way that the performance

FIG. 4. Results for the NTL9 protein. (a) VAMP score for Gaussian RFF approximation as a function of the kernel bandwidth σ. The red and blue lines show the results
using all 666 distances for different lag times and different numbers of Fourier features p. The magenta lines show the average values over ten random selections of only
50 distances, with p = 300 fixed. (b) Slowest implied timescale t1 as a function of the lag time t. The green lines show estimates based on linear TICA using the top-ranked
20, 100, and 300 distances. The blue lines show RFF-based estimates on all distances using different values of p, using σ = 15.0. The red lines are averages over the
above-mentioned random subsamples of the distance coordinates, where p = 300 is fixed.
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of TICA improves as more and more of the ranked distances are
added. However, we show that the kernel method is more robust
with respect to the selection of input coordinates by randomly select-
ing d = 50 out of the 666 distances and recomputing both the VAMP
score and implied timescales for different bandwidths, keeping the
number of Fourier features fixed at p = 300. We see in Figs. 4(a) and
4(b) that both the optimal value of the VAMP score as well as the
timescale estimates remain stable across random selections of the
input distances [magenta lines in panel (a), red lines in panel (b)].
The convergence of timescales is, therefore, mainly dependent on
the number of Fourier features p, which can be automatically tuned
using the VAMP score, and not on the selection of input coordi-
nates. Moreover, we also find that under random distance selection,
the optimal regime of kernel bandwidths changes as the dimension
of the input coordinate space becomes significantly smaller. This
is reliably reflected by the behavior of the VAMP score; see again
Fig. 4(a).

VI. CONCLUSIONS
We have introduced a new approach to extracting the domi-

nant eigenvalues of dynamical operators associated with stochastic
processes, corresponding to the slow timescale dynamics in molec-
ular kinetics. Building on kernel representations of the Koopman
operator and generator, our main novelty is a dual low-rank rep-
resentation of the kernel matrices using random Fourier features.
We have derived the corresponding reduced eigenvalue problem
and provided an interpretation of the method in terms of a ran-
dom dictionary of plane waves. Using four examples of increasing
complexity, we have shown that hyper-parameters of the method
can be very effectively tuned using the VAMP score metric. More-
over, we have shown that only a few hundred Fourier features
were sufficient to obtain accurate and robust results for all sys-
tems considered. This finding allowed us to rapidly scan kernel
hyper-parameters for data sizes in the ten thousand on coordinate
spaces of dimensions up to several hundred. The computational
savings compared to the full eigenvalue problem, measured in float-
ing point operations, were on the order of three to four orders of
magnitude.

The main promise of our method is the ability to analyze large
datasets using a very generic and, in fact, randomly generated basis
set. The success of the method depends on the number of required
Fourier features. Future research will need to test if this number
indeed remains small even for larger systems, which would make the
method scalable beyond the benchmarking examples studied here.
Combining our approach with re-weighting techniques would allow
the application of the method to enhanced sampling simulation
data. It will also be interesting to see if kernel functions with more
specific properties can be used, for instance, kernels incorporating
more detailed symmetries than only translational invariance, ker-
nels acting on mixed types of domain (periodic and non-periodic),
or kernels associated with Sobolev spaces, which have rich ana-
lytical properties. In addition, concerning the theoretical analysis,
it is known that the timescale separation between slow and fast
dynamics expected for metastable systems induces an approximate
low-rank structure of the Koopman operator. Our results suggest
that this structure can be captured by a small number of random fea-

FIG. 5. Top Row: Representations of the two PCCA states obtained for σ = 15,
p = 300, and t = 2 μs. For each PCCA state, we show the fraction of simulation
time during which each residue–residue pair forms a contact; see also Ref. 38.
Bottom Row: Representative protein structures for both PCCA states.

tures. Providing a more detailed analysis of this heuristic argument
presents another future research direction.
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https://doi.org/10.5281/zenodo.8036525, with the exception of
the raw molecular dynamics simulation data, which can be obtained
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directly from the authors or, in the case of NTL9, from the copyright
owners. PCCA decompositions and all Markov state model results
were computed using the deeptime library.43

APPENDIX: DERIVATION OF KERNEL EIGENVALUE
PROBLEMS

Our derivation of the kernel eigenvalue problems in Sec. II F
follows.23,24 We compute the matrix elements of the operators
𝒢, 𝒜 t , 𝒜L on the finite-dimensional space Hm with respect to its
canonical basis {Φ(xl)}m

l=1,

⟨Φ(xr), 𝒢Φ(xs)⟩H =
1
m

m

∑
l=1

Φ(xs)(xl)⟨Φ(xr), Φ(xl)⟩H

= 1
m

m

∑
l=1

k(xs, xl)k(xl, xr)

= 1
m
[KXKX](r, s), (A1)

⟨Φ(xr), �̂�tΦ(xs)⟩
H
= 1

m

m

∑
l=1

Φ(xs)(xl+1)⟨Φ(xr), Φ(xl)⟩H

= 1
m

m

∑
l=1

k(xs, xl+1)k(xl, xr)

= 1
m
[KXKY](r, s), (A2)

⟨Φ(xr), 𝒜LΦ(xs)⟩
H
= 1

m

m

∑
l=1
(ℒΦ(xs))(xl)⟨Φ(xr), Φ(xl)⟩H

= 1
m

m

∑
l=1
[∇F(xl) ⋅ ∇Φ(xs)(xl)

+ 1
2

a(xl) : ∇2Φ(xs)(xl)]k(xl, xr)

= 1
m

m

∑
l=1
[∇F(xl) ⋅ ⟨∇1k(xl, ⋅), Φ(xs)⟩H

+ 1
2

a(xl) : ⟨∇2
1k(xl, ⋅), Φ(xs)⟩H]k(xl, xr)

= 1
m

m

∑
l=1
[∇F(xl) ⋅ ∇1k(xl, xs)

+ 1
2

a(xl) : ∇2
1k(xl, xs)]k(xl, xr)

= 1
m
[KXKL

X](r, s). (A3)

Here, we used the subscript∇1 for the nabla-operator to indicate dif-
ferentiation with respect to the first variable. To get from the second
to the third line, we used the derivative reproducing property,

Dα f (x) = ⟨Dα
1k(x, ⋅), f ⟩

H
, (A4)

which holds for any multi-index α and all RKHS functions f as soon
as the kernel is at least 2∣α∣-times continuously differentiable in both
arguments, see Ref. 20.

We see that in all cases, the full-rank matrix KX can be canceled
out, which leaves us with (26). In the reversible case, we replace the
operator 𝒜L with a symmetric bi-linear form

𝒜 rev( f , g) = − 1
2m

m

∑
l=1
∇⊺ f (xl)a(xl)∇g(xl). (A5)

Computing its matrix elements on Hm, we find

𝒜 rev(Φ(xr),Φ(xs)) = −
1

2m

m

∑
l=1
∇⊺Φ(xr)(xl)a(xl)∇Φ(xs)(xl)

= − 1
2m

m

∑
l=1
∇⊺1 k(xl, xr)a(xl)∇1k(xl, xs)

= Krev
X (r, s). (A6)

In this case, we cannot cancel a factor KX , which leads to (27).
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