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ABSTRACT: The aim of molecular coarse-graining approaches is
to recover relevant physical properties of the molecular system via a
lower-resolution model that can be more efficiently simulated.
Ideally, the lower resolution still accounts for the degrees of
freedom necessary to recover the correct physical behavior. The
selection of these degrees of freedom has often relied on the
scientist’s chemical and physical intuition. In this article, we make
the argument that in soft matter contexts desirable coarse-grained
models accurately reproduce the long-time dynamics of a system
by correctly capturing the rare-event transitions. We propose a
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bottom-up coarse-graining scheme that correctly preserves the relevant slow degrees of freedom, and we test this idea for three
systems of increasing complexity. We show that in contrast to this method existing coarse-graining schemes such as those from
information theory or structure-based approaches are not able to recapitulate the slow time scales of the system.

B INTRODUCTION

Numerical simulation of complex high-dimensional systems in
biophysics and condensed matter has become a powerful tool
for the understanding of processes that can not be directly
observed in wet lab experiments. The significant advances in
hardware and software of the last couple of decades now allow
one to routinely simulate medium size proteins at atomistic
resolution and microsecond time scales. With dedicated
hardware," or bias-enhanced sampling techniques,”” or
distributed simulations combined with Markov state models
(MSMs),* it is possible to reach the millisecond time scale and
sample folding and binding events and large conformational
changes.”™” From these long-time scale simulations, it is clear
that the relevant structural, thermodynamic, and kinetic
information for many biomolecular processes can be
significantly simplified and expressed in lower-resolution
models.*”"" Rare-event transitions such as folding, binding,
and conformational changes can often be well described in
terms of a few collective variables, as supported both by
statistical mechanics arguments'> as well as plenty of empirical
evidence resulting from transfer operator theory®"’ and
Markov modeling.”'* Consequently, it should be possible to
summarize the essential properties of structure, thermody-
namics, and kinetics that are relevant for the long-time scale
behavior with a molecular model with fewer degrees of
freedom.

Indeed, coarse-grained (CG) models, which implement this
idea explicitly by representing groups of atoms as coarse-
grained beads have long been used in the study of large
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molecular systems'”">~"” and have been useful to extend the

reach of simulations to longer time scales and larger system
sizes. The ability of a CG model to reproduce the relevant
physics of a molecular system relies on two closely connected
aspects: (1) the choice of the CG resolution and the
corresponding degrees of freedom (usually referred to as
“CG mapping”) and (2) the design and parametrization of the
associated effective energy function. Several design principles
to tackle the second of these tasks have been proposed to
obtain a CG energy once the resolution is set. These include
(i) bottom-up CG approaches via force-matching, relative
entropy minimization, or Boltzmann inversion'®~*° where the
CG model is designed to reproduce the same coarse-grained
thermodynamics of an all-atom model, (ii) fitting a set of
observable quantities to the corresponding ones obtained in
all-atom simulation and/or experimental data,”"** or (iii) the
minimization of frustration in model protein systems.'® In
addition, the flexible parametrization of the CG energy using
neural networks has recently received great attention.” >’
On the other hand, the systematic selection of a suitable CG
mapping, i.e., which degrees of freedom to retain upon coarse-
graining, is a task that has received comparatively little
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attention®®®! and is often left to the scientist’s chemical

intuition. The success of a CG model is often assessed a
posteriori by comparing the results of CG simulations with their
all-atom counterpart or experimental data, however, such a
comparison can not disentangle the effects associated with the
CG mapping from the ones associated with the choice of
energy function.””** >’

One of the first approaches to quantify the “goodness” of a
given CG mapping for the parametrization of a CG energy was
introduced via the definition of the mapping entropy (S,,,) as
part of a relative entropy framework'®—also known as
likelihood-based training of energy-based models in machine
learning.‘wSmap depends only on the CG mapping (i.e., it is not
affected by the choice of the CG energy), and its absolute value
quantifies the amount of information lost upon coarse-graining.
Following this idea, the minimization of the absolute value of
Suap (or, equivalently, the maximization of its signed value, see
Methods for details) has been proposed as a criterion for
selecting a CG mapping at a given resolution.”” While the
initial work was demonstrated on harmonic systems where
Suap can be analytically computed, the applicability of the
method has been later extended*’ by deriving a numerical
approximation of S, that enables its estimation for more
complex systems.*"**

In later work, it was noted that the maximization of S, for
the selection of an optimal CG mapping preserves upon
coarse-graining mostly information associated with local high-
frequency motions rather than global processes.”” The same
authors proposed as an alternative approach the selection of a
mapping scheme by optimizing a different quantity, the
Vibrational Power, defined as the trace of the mass-weighted
covariance matrix of the CG coordinates. This quantity allows
an estimate of how well a CG model preserves large-scale
motions.*

In parallel, different groups have proposed to define CG
mapping schemes based on their ability to recover all-atom
coordinates, e.g., by learning a CG mapping and all-atom
reconstruction simultaneously via an autoencoder” or by
other machine learning approaches that employ structural
classification or reconstruction errors (RE).44_46

In this work, we systematically investigate the effect of CG
mapping on its ability to reproduce the long time scale
processes of the system. We follow an orthogonal direction
compared to previous approaches and exploit the Variational
Approach for Markov Processes (VAMP)*" in order to
propose the selection of an optimal CG mapping that explicitly
maximizes the CG model’s ability to reproduce long-time scale
processes. By means of a careful comparison, we find that such
a VAMP-optimized CG mapping substantially disagrees with
existing approaches.

B RESULTS AND DISCUSSION

We first discuss the general idea of our approach and then
demonstrate it on three separate systems of increasing
complexity (see Figure 1): (1) a 4-bead harmonic chain, (2)
a Gaussian Network Model (GNM) of a protein, and (3) a
model protein previously studied in the literature that is
capable of adopting folded, misfolded, and unfolded
conformations.”® For each choice of linear mapping

M € RM" from the fine-grained coordinates x € R" to the
CG coordinates Mx = X € [RN, we consider the effective CG

(A GWO%

Figure 1. Visualization of the 3 systems studied. (A) Simple 4-bead
harmonic chain. Here each bead is treated the same, and k, and k,
represent the strength of the spring. (B) Gaussian network model
from the C, atoms of protein 2ERL with a neighbor cutoff of 10 A.
(C) Model protein system, as defined in ref 48, representative of a
protein hairpin. Pairs of beads with equal color have attractive
interactions.

energy, W(X), that is thermodynamicallgr consistent with the
full resolution model with energy u(x):'

= 1 [eP®sx — Mx
w(Xx) = ﬂl/e 5(X — Mx) dx W

where f is the inverse temperature. For systems 1 and 2, we
can obtain the thermodynamically consistent CG energy
function analytically, as well as the partition function and all
ensemble averages (see the Supporting Information for detail).
For system 3, the thermodynamically consistent CG energy
can not be computed analytically, and one would need to use,
e.g., a machine-learning approach to approximate it numeri-
cally.”**® However, we do not need an expression for the CG
energy to evaluate the different metrics for the selection of the
optimal mappings as they can be computed from equilibrium
trajectories of the underlying high resolution reference model
(see the Supporting Information for detail).

We choose here to focus on simple and small systems
instead of a more realistic protein model for ease of
interpretation (system 1), to be able to obtain analytical
results (system 2), and/or to enumerate all possible mapping
choices and exhaustively compare the different metrics (system
3).

We show that in all cases a mapping scheme can be clearly
and efficiently selected to best capture the long-time dynamics
of a system even for highly nonlinear systems, a direct
advantage over methods that must make linear approximations
or ignore the time evolution dimension of the system.

Defining the CG Mapping Criterion via the Varia-
tional Approach for Markov Processes (VAMP). In the
analysis of molecular dynamic (MD) simulations, one often
seeks to define reaction coordinates that are able to
characterize the slowest processes, or rare-event dynamics.*’
On long time scales, the equilibrium molecular dynamics of
molecules with rare events can be expressed in terms of the
dominant eigenvalues and eigenfunctions of the dynamical
propagator, such that these eigenfunctions are a natural choice
for the rare-event coordinates.”"® The Variational Approach
for Conformation dynamics (VAC)*>*' is a framework to
systematically approximate the rare-event eigenfunctions,
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Figure 2. Comparison between different CG mapping methods for the 4-bead harmonic chain. The top part shows the results for the case k; < k,
(soft spring at the edges) while the bottom part for k; > k, (soft spring in the center). The different mapping metrics are reported for each of the
considered CG maps (illustrated by the cartoons in the middle), with the optimal values indicated by a star.

which is achieved by maximizing the VAC score. When
representing these functions with a linear combination of basis
functions, one obtains the Time-lasgged Independent Compo-
nent Analysis (TICA) algorithmsz’ ® as a result. However, the
score can also been used in a more general setting, for example,
in the training of neural networks to find a nonlinear
representation of the rare event coordinates.”* ° Recently,
VAC has been generalized to the variational approach for
Markov processes, which also permits the dynamics to be out
of equilibrium®” and is closely connected to Koopman theory
for dynamical systems.®” >’

The VAMP score is a quantity that can be easily computed
from simulated trajectories and assesses the ability of a set of
variables to describe the slow dynamics of the system: the
higher the VAMP score, the more appropriate the set of
coordinates to serve this purpose. The VAMP score for
reversible dynamics can be written as"’

VAMP score = trace(Cyy'Co,) 2)

Coo = [Eﬂ[Xt‘XtT] (3)
T

COr = [Ey[XtXt+r] (4)

where X, is the vector containing the values of all the selected
coordinates at time ¢, X, contains the values of such
coordinates after a lag time 7, and [E”[-] is the expectation
value computed with the equilibrium probability distribution
of the full resolution model. The matrices Cy, and C,, are the
covariance matrix and the time-lagged covariance matrix,
respectively. For the harmonic systems studied here, the
VAMP score, as well as other scores to assess the quality of the
CG mapping can be computed analytically, except for the

reconstruction error (See Methods for the derivation of these
expressions).

Recently, the VAMP score has been used for selecting
optimal features for constructing Markov state models such
that the rare-event dynamics of the molecule are best-
resolved.”” Here we propose to use the VAMP score in
order to define the CG mapping: for a fixed resolution, the
selection of CG degrees of freedom that best capture the long
time scale dynamics also need to maximize the VAMP score
among all possible CG mapping schemes.

In the following, we discuss the results on three model
systems, while the detailed calculations are reported in the
Methods section and in the Supporting Information.

4-Bead Model System. We start by examining a simple
symmetric 4-bead harmonic chain (Figure 1A) with the
Hamiltonian

H = k(% — x2)2 + ky(x, — x3)2 + ky(x, — x3)2 (3)

For this system, we can obtain analytical results of
thermodynamic and kinetic quantities and exhaustively
enumerate all possible CG mapping schemes.

In the coarse-graining community, there are two primary
styles of mappings: (i) “slicing”, whereby individual atoms are
selected to represent the coarse-grained beads, or (ii)
“averaging”, where multiple atoms are used to represent a
bead and their properties averaged.”’ Here we consider all
possible slicing and averaging mappings from the 4 “atom”
system into 2 CG beads. In the averaging mappings, we assign
the same weight to each atom assigned to the same bead.

By varying the relative stiffness of the springs between the
beads (k; < k, or k; > k,) we obtain different optimal mappings
(Figure 2). In the case of a stiffer spring in the middle and
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Figure 3. (A) Comparison of the optimal mappings for the GNM of protein 2ERL at different bead resolutions. The CG mappings optimizing the
VAMP/Variational Power/mapping entropy (top/middle/bottom) criteria (refer to text for details). Different resolutions are shown from the left
(2 CG beads) to the right (6 CG beads). (B) VAMP score corresponding to each possible mapping strategy at 4-bead resolution plotted versus the
corresponding Vibrational Power. The gray lines running along the top and right indicate the optimal mappings for the two strategies. The colored
dots indicate the models corresponding to different optimal mapping strategies, and the orange diamond correspond to the block map, with all
beads composed of the same number of atoms. (C) Time scales of the system (as obtained by TICA) ordered by decreasing value for the three
different mapping strategies (indicated by the colors) for a model with a 4-bead resolution, in comparison to the full-resolution model.

softer springs at the edges (k; < k,), a CG mapping retaining
beads 2 and 3 only describes the fast fluctuations that are
usually not of interest. However, this is the CG mapping
scheme maximizing the (negative) value of the mapping
entropy. On the other hand, the maximization of the
Vibrational Power and of the VAMP score, as well as the
minimization of the reconstruction error, yields the same CG
mapping corresponding to the selection of the first and last
bead of the chain, therefore describing the largest (and, in this
case, slowest) fluctuations.

The situation is quite different for the case of a softer spring
in the middle (k, > k,), which can be considered a toy model
of a molecule where hydrogen atoms are bound with a very
stiff spring to two central atoms (e.g., hydrogen peroxide H—
O—O—H). As high energy fluctuations have a dominant effect
on the evaluation of S, the maximization of the (negative)
value of S, in this case, selects to preserve the fast motion
associated with the first two (or equivalently the last two)
beads. Interestingly, this is the mapping scheme also selected
by the minimization of the reconstruction error. The
maximization of the Vibrational Power again preserves the
motion of the largest amplitude,selecting the first and last

beads. However, in this case, this CG mapping does not
correspond to the one preserving the slowest motion, which is
instead given by the maximization of the VAMP score and
yields an averaging scheme that takes into account also the
contribution of the two middle beads (see Figure 2).

The physical meaning of the difference between the
maximization of the Variational Power and the maximization
of the VAMP score is analogous to the difference in the
selection of reaction coordinates by methods such as Principal
Component Analysis (PCA), which describes the largest
amplitude motions, as opposed to methods such a TICA,
describing the slowest processes. It is well-known,>® that PCA
and TICA can give very different results as the amplitude of a
motion does not necessarily report on its time scale. Therefore,
if the interest is the preservation of the slowest processes upon
coarse-graining, once the resolution is selected, the CG
mapping maximizing the VAMP score should be considered.

Gaussian Network System. In order to further illustrate
the divide between the different mapping criteria but still be
able to obtain analytical solutions, we consider a Gaussian
Network Model (GNM) of a protein. Gaussian network
models have been used extensively in the past for proteins as
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their simplicity allows for fast, interpretable results that in

eneral give qualitative agreement with experimental re-
sults.””** GNMs typically select carbon alpha (C,) atoms in
the protein backbone and model with a harmonic spring the
interaction between any C, pairs that lie within a preset cutoff
distance in the native structure.’* As usual for GNMs, all these
springs are modeled with equal spring constants, so in contrast
to the 4-bead system above, the GNM dynamics depend on
the degree of connectivity between beads rather than the
strength of individual springs.

Following ref 43, we consider the GNM of the 40-residue
protein 2ERL. Given the small size of the protein, we can
enumerate a large number of CG mappings for different
numbers of CG beads. We consider all the possible partitions
of the 40 C,’s into N = 2, 3, 4, 5, and 6 groups of subsequent
atoms, and define the CG beads as the average over each group
of atoms. It is worth noting that our definition of possible
mappings is different from what is considered in ref 43. There,
the authors define a valid mapping as a partitioning of all the
40 C,’s of protein 2ERL into N = 2, 4, §, 8, 10, 20 disjoint
groups of an equal number of 40/N C, atoms. They require
the C, atoms belonging to the same CG bead to be connected
in the GNM but not necessarily to be subsequent along the
sequence. This criterion generates quite a large number of
possible mappings, e.g., for N = 5 there exist ~10** choices.
For this reason, they sample the landscape of allowed CG
mappings with Monte Carlo simulations. In contrast to ref 43,
in the present work we require the CG beads to be formed by
groups of subsequent atoms, while we also consider partitions
of atoms into groups of different sizes, ranging from 1 to 40—
(N—1). This definition of possible mappings allows us to
exhaustively enumerate them. For instance, for N = S there
exist 82251 combinations. A more detailed comparison of the
results obtained with the mapping choice of ref 43 is presented
in the Supporting Information.

At each resolution, we evaluate the analytical expression for
the VAMP score, the Vibrational Power, and S, (see
Methods and Supporting Information for details) over all the
possible CG mappings and select the ones optimizing the
different metrics. Because of the large number of possible CG
mappings for this system, the training of an autoencoder for a
numerical estimate of the reconstruction error for each of them
is not feasible and we limit the analysis to these three metrics
that can be analytically evaluated. Figure 3A shows the
grouping of consecutive C, atoms to CG beads by different
colors. Groups consisting of single C,’s are shown as a sphere.
It is clear that different mapping criteria lead to significantly
different optimal mapping schemes. Analogously to the 4-bead
harmonic system discussed above, the maximization of the
Vibrational Power tends to select N — 1 single C, atoms at the
termini as CG beads while grouping all the remaining 40 — (N
— 1) C, atoms into a single bead. This effect is seen at all
resolutions considered (see Figure 3A). Indeed, this selection
is consistent with the preservation of the largest amplitude of
motion, corresponding to the displacements of the termini of
the protein with respect to each other. On the other hand, the
optimization of the S, yields CG mappings corresponding to
more uniform partitions of atoms along the sequence,
consistent with the preservation of local and high-frequency
motions. The CG mappings selected by the maximization of
the VAMP score is a sort of compromise between the grouping
selected according to the optimization of the S or

map
Vibrational Power metrics, as it comprises a combination of

single atoms at the termini and different stretches of atoms
across the protein.

We note the optimal mappings for the S, or Vibrational
Power metrics shown in Figure 3 are very different from those
reported in ref,*’ as there the CG beads are constrained to
contain the same number of C, atoms and the non-
homogeneous bead sizes obtained here are a priori excluded.

In Figure 3B, the VAMP score corresponding to all possible
4 bead resolution CG mappings is plotted versus the
Vibrational Power, and the CG optimal mappings according
to different criteria are highlighted.

Figure 3C shows that VAMP-based CG maps best preserve
the long time scale dynamics. The time scales are estimated
from the eigenvalues of the Koopman matrix defined by the
covariance and time-lagged covariance of the coordinates of
the CG beads, as customary in the analysis of MD simulation
(see Supporting Information and ref 53 for additional detail).
The time scales are reported in order of decreasing value for
the different optimal mapping choices at resolution N = 4 and
compared with the time scales estimated by the same method
on the full resolution (i.e, N = 40). Based on the definition of
the GNM energy function (eq 6), if a resolution of 4 beads is
chosen for the CG system, we can compare only the three
slowest time scales of the full resolution GNM with the time
scales reproduced by the different CG systems. The CG
mapping selected by the optimization of the VAMP score
reproduces accurately the first three time scales, significantly
better than the ones selected by the optimization of the
Vibrational Power or of S,,,. The orange diamonds in Figure
3, parts B and C, mark the values corresponding to the block
map, that is the CG map where each bead contains the same
number of atoms. This map is very close to the one optimizing
the Vibrational Power when the mapping space is defined by
the criterion of ref 43 (see Supporting Information for a
detailed comparison with the results obtained with this
criterion).

Model Protein System. Finally, we turn to a more realistic
albeit simple system: a 13-atom model protein containing
harmonic bonds/angles and nonbonded interactions via
Lennard-Jones potentials (Figure 1C). This system was
originally proposed in ref,* and shown to exhibit folding/
unfolding dynamics. For increased interpretability and for fast
computation, we focus here only on the slicing strategy for the
definition of the CG mappings, and at the fixed resolution of N

=5 CG beads, considering all (153 ) = 1287 ways of selecting S

beads from the 13 “atoms” of the model. Because of the
nontrivial interactions, we cannot obtain analytical resolutions
for this system, however, the VAMP score and Vibrational
Power can be computed numerically by estimating the
covariance and time-lagged covariance matrices over simulated
trajectories47 (see Supporting Information). For every
mapping, we assume that the corresponding effective CG
energy function is thermodynamically consistent with the
reference fine-grained model. This implies that the CG model
can reproduce the same probability distribution for the CG
degrees of freedom as obtained from the high-resolution
trajectories under the CG mapping. With these premises, we
can use the high-resolution trajectory directly to compute
ensemble averages.

The relatively small number of CG mapping choices allows
training a separate autoencoder for each mapping in order to
evaluate the corresponding reconstruction error, whereas
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Figure 4. Top panel: The VAMP score corresponding to all possible 5 bead resolutions CG mappings for the model protein is plotted versus the
Vibrational Power. The gray lines running along the top and right indicate the optimal mappings for the two strategies. For each optimal mapping,
the corresponding CG model is shown with the selected beads highlighted. Bottom panel: Projection of the TICA time scales for CG models
corresponding to different optimal mapping strategies (colored dots), compared to the TICA time scales of the full-resolution model (gray dots).

values of S,,,, cannot be as simply estimated and associated
with the different mappings for this system. A numerical
approximation for S, does exist;"” however, some ambiguity
remains on the definition of the appropriate choice of
parameters for this method. We found the results to vary
wildly with small variations of these parameters. Additionally,
as it was already discussed in ref 43, and as is evident from the
results presented above, it is clear that S,,,, does not provide
useful information on the preservation of slow degrees of
freedom upon coarse-graining.

Figure 4a shows the Vibrational Power corresponding to
each of the different CG mappings, plotted as a function of the
VAMRP score for the same mapping. The two quantities weakly
correlate in the area corresponding to poor choices of CG
mapping, indicated by small values of both. However, the CG
mappings selected by the optimization of these two metrics
(gray horizontal and vertical lines for the Vibrational Power
and VAMP score, respectively, and illustrated on a cartoon of
the protein model) are significantly different: a maximum
Vibrational Power select the atoms at the terminal ends as CG
beads, while a maximum VAMP score disperses them evenly
throughout the model protein. As for the previous systems,
these results are in agreement with the interpretation of the VP
metric capturing the largest amplitude displacements of the
system, but failing to recover the more nuanced motion

involving degrees of freedom along the hairpin. The CG
mapping corresponding to a minimal reconstruction error is
also highlighted in the plot and illustrated on the protein
model.

As in the previous example, Figure 4b shows the model
protein’s relaxation time scales recovered by different CG
mappings. The time scales are approximated using the TICA
method,*® by computing the Koopman matrix using covariance
matrices of all interparticle distances (see Supporting
Information for details). The 6 slowest time scales associated
with the CG mapping with optimal VAMP score (4b, blue
dots) closely match the time scales of the 6 slowest time scales
of the full resolution model (gray dots). Additionally, even
faster time scales (index >6) are reproduced to a good degree.
The CG mapping with maximum Vibrational Power
reproduces the 6 slowest time scales to a lesser extent, and
presents a sharp drop for time scales with an index >6, again
indicating that this metric does not necessarily preserve the
system dynamics. This gives evidence that, for this system
coarse-grained at a S-bead resolution, the optimization of the
Vibrational Power captures well the longest-time scale behavior
of the system corresponding to the fluctuations of the end-to-
end distance, but it cannot recover additional slow processes.
The results associated with the CG mapping corresponding to
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the minimization of the reconstruction error appear to lay in
between what is obtained with the other two metrics.

It is important to note that, if different or additional
properties are desired in a CG model (instead or in addition to
recovery of the slow dynamics), e.g., the possibility of
accurately backmapping to the full resolution, one needs to
change the optimization metric or find a compromise between
two or more optimization criteria. While the maximization of
the mapping entropy appears to produce mappings very
different from the optimization of the other metrics in all the
examples presented here (see, e.g,, Figure 2), from Figure 4, it
appears that there is no strong trade-off between the
minimization of the reconstruction error and the maximization
of the VAMP score, at least for this simple model system.

B CONCLUSION

We explore the definition of an optimal CG mapping scheme
and consider a variety of methods based on information
theory, structural reconstruction, or Koopman theory for
dynamical systems. We do this under the assumption that
coarse-graining can be split into two separate processes: (1)
choice of mapping and (2) definition of a CG Hamiltonian.
Here we focus on the choice of mapping to build CG models
with a well-defined main objective and use the thermodynamic
consistency criterion for bottom-up coarse-graining'® to define
the corresponding CG Hamiltonian (eq 1). While this
assumption is justified for the simple models used in this
work, in a more realistic setting the choice of the mapping is of
course interconnected with the design of the CG energy
function. In biological and soft matter systems, we argue that
the main objective of coarse-graining is to be able to correctly
capture the behavior of a complex and high-dimensional
system over long time scales. That is, we want a coarse-grained
model to simulate the time scales where most physically
relevant processes such as global protein conformational
changes or ligand binding/unbinding occur, but they are
challenging to characterize with fine-grained simulations. The
faster degrees of freedom in contrast, which may be potentially
relevant for, e.g.,, biochemical specificity, are amenable to be
probed with all-atom simulations at a reasonable computa-
tional cost. Following this line of reasoning, a suitable bottom-
up coarse-grained model should be able to accurately recover
the appropriate slow mechanisms and describe the transitions
between the same metastable states as accurately as the all-
atom counterpart. As the preservation of the slowest processes
upon coarse-graining is of key importance, a mapping scheme
optimized toward this goal is usually desirable.

In the field of dynamical systems and Koopman theory, the
VAMP score has been introduced to quantify the ability of a
(small) set of features to capture the slow “dynamical modes”
of a system, and we propose here to use this metric also for the
definition of an optimal CG mapping. Loosely speaking, a
choice of coordinates based on the maximization of the VAMP
score leads to the selection of the subset of degrees of freedom
that more accurately spans the space defined by the first few
eigenfunctions of the Koopman operator, that in turn provides
the best linear approximation of the system’s dynamic
evolution.””

It is important to note that, for realistic systems, in order to
accurately recover the dynamics of the fine-grained system in
the CG coordinates, one would need to use a generalized
Langevin equation, derived, e.g, through the Mori—Zwanzig
formalism and comprising a memory kernel. However, building
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up on previous wor we have recently shown®® that for
overdamped Langevin dynamics, if the eigenfunctions of the
Koopman operator of the fine-grained system can be well
approximated in the space spanned by the CG coordinates, the
corresponding time scales are also well approximated by the
projected CG dynamics in the form of an overdamped
Langevin equation. As the maximization of the VAMP score
selects the CG coordinates that best approximate the fine-
grained eigenfunctions, the maximization of the VAMP score is
consistent with this point of view.

We have tested this idea by comparing the performance of a
CG mapping scheme maximizing the VAMP score against
other popular choices, on three different systems of increasing
complexity, by means of both analytical and numerical
calculations. We show that, while the optimization of the
VAMP score leads to the successful recovery of the dynamics
on the slowest time scales, alternative methods fall short in this
regard.

On the basis of these results, we believe that the definition of
CG mapping to preserve molecular kinetics can be done
systematically. Here we have shown a proof of principle on
simple model systems, but the same criterion could be used for
the choice of resolution in a more realistic CG protein model
transferable in sequence space. That means that different
partitioning of the atoms in each amino acid into CG beads
could be explored and compared. For instance how much more
kinetic information is preserved if a C,—Cs CG model is used
instead of a C,-only model on a set of test proteins? Future
work will address this question and related ones.

In this regard, we want to emphasize that the choice of
mapping is only the first step in constructing a complete CG
model and the overall performance of the model critically
depends on the definition of the CG Hamiltonian as well.
Nevertheless, we believe that the optimization of the CG
resolution plays an important role in the ability of the model to
reproduce the system’s long-time scale behavior.

B METHODS

Simulation Protocol. Numerical simulations for the
harmonic systems were carried out following the protocol
outlined in ref 69 and are summarized in the Supporting
Information.

Coarse-Graining of a Harmonic Model. We consider a
general harmonic system with an energy function in the form

1 T Lo r
u(x) = 2(x -x) I'(x — x) = 25x I'sx ()
where T is the connectivity matrix (called Kirchhoff matrix in
the context of a GNM), x is the vector of all coordinates, x; is
the vector of coordinates of a reference configuration, and 6x is
the displacement vector.

By following ref 39, the full thermodynamics of a harmonic
system can be obtained, as well as for CG models
thermodynamically consistent with it. Here we report the
definitions and final analytical expressions; for a full derivation
please refer to refs 39 and 43.

We assume a linear mapping M € RN*" defines the coarse-
grained coordinates X € RN from the fine-grained ones
x €R" X = Mx, with N < n. eq 1 reports the general
definition of the effective CG energy function, W(X), that is
thermodynamically consistent with a fine-grained model with
energy u(x)."® For a harmonic system with energy given by eq
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6, a compact solution for the expression of the thermodynami-
cally consistent CG energy (eq 1) can be obtained analytically:

T,
il G W,
tr (7)

where W is a protein-independent constant, 6X = X — X is
the vector of the displacements in the coordinates of the CG
beads, X, = Mx, is the reference configuration of the CG
model, and we have defined the effective CG matrix K as

K= (QMr-'mM'Q)* (8)

where Q = 1y — 1/NJJ}; is the projection operator that filters
out free translations and the vector J,, = 1.. I)T eRY.In eq

wW(X) = LsxTrsx — 26,7 In
2 2 °

[ (9)
and
-1
Ty = i A,
N (10)

are the products of the nonzero eigenvalues of the matrix I’
and K, respectively.

Mapping Entropy. Following ref 39, the mapping entropy
associated with a CG model is given by the difference between
the excess configurational entropy of the full resolution model,
s, and the same quantity when it is “perceived” from the CG
configurational space, s:

Smap =S5 T Sx (11)
5, = —kg f (%) In(V"p,(x)) dx (1)
s = kg [ (%) In(Vp, (X)) dX 0

where V is the volume of the system, and p,(x) and py(X) are
the Boltzmann weights associated with the energy function of
eq 6 and of eq 7, respectively. The mapping entropy S, is
always negative and its maximization (that is, the minimization
of its absolute value) has been proposed as a criterion to define
an optimal CG map.*”

For a harmonic system, these expressions can be analytically

evaluated,”"* and they give
ma 1 1
P =(n=N)sy+—InT, — —Int
s 2 2 (14)
1 1 1.1
=(n — N)sy + —In — A, — =In — A;
Gy H L2 H ’ (15)
1 1
==Y A, - =) Ink+CN,n)
25 29 (16)

where both s, and C(N, n) are model-independent constants
(s, is only function of the volume, and C(N, n) depends on the
dimensionality of the fine-grained and coarse-grained models),
and tr, Tk are the products of the nonzero eigenvalues, 4; and
A, of the matrices I" and K, respectively (see eqs 9 and 10)).

As the eigenvalues 4; and A; are all positive, the expression
for the mapping entropy (16) can also be written as

Smp 1 1
P = —trace(In K) — —trace(InT") + C(N, n)

kg 2 2 (17)

Lirace(in €2 — Ltrace(In ¢21) + C(N, n)
=—trace(Iln — —trace(ln ¢ , N

9 00 2 00 (18)
=L trace(In ¢yp) — “trace(In Cyy) + C(N, n)
= race(ln ¢y 2 race(ln Cy, , N (19)

where we have used Coy = K™' and defining coo = [\,

VAMP Score for Harmonic Systems. Here we provide a
quick overview of the procedure and provide the final result for
the analytical calculation of the VAMP score in a system of
beads connected by harmonic springs, with energy in the form
of eq 6. For the full derivation please refer to the Supporting
Information.

From its definition (eq 2), the calculation of the VAMP
score requires the evaluation of the matrices Cy and Cy, (eqs 3
and 4). These matrices can be computed analytically for a
harmonic system. The matrix Cy, represents the covariance of
the CG coordinates and is straightforwardly obtained as

Coo = (M5, Méx), = / e POpMsxdx™M" dx = K~
(20)

where K is the effective CG matrix defined in eq 8. The matrix
Cy, is the time-lagged covariance matrix, that can be expressed
as

COT = <M5X, MPT((;X)” (21)

where P, = exp(Lr) is the propagator of the dynamics
associated with the (full resolution) harmonic system, for a
lagtime 7, and £ is the generator of the dynamics."” Assuming
that the time evolution of the system can be described as an
overdamped Langevin dynamics, with friction coefficient y, the
eingenfunctions and eigenvectors of the dynamic propagator
can be obtained. Therefore, by decomposing the system
coordinates into these eigenfunctions, expression 21 can be
analytically evaluated (see Supporting Information for details).
The final result is

Co, = QUI''Q M'Q (22)

where the matrix Q, is defined as

n 1
Q = Z u; exp[—;l‘r)uiT e R™"

i=1

(23)

where 4; and u; are the eigenvalues and eigenvectors of the
matrix I'. With the expressions for Cy, and C,y,, the VAMP
score is obtained as

VAMP score = trace(Coy Cy,) (24)

=trace((QMT'M'Q)'QMTI''Q M'Q) (25)

Vibrational Power. Following ref 43, the vibrational power
is defined as the trace of the mass-weighted covariance matrix
describing correlated fluctuations. Here we assume uniform
mass for all particles, and therefore, in our notation, the
vibrational power (VP) of a CG model defined by the CG
mapping M is

VP = trace((Mdx, Mdx),) = trace(Cy) (26)
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Reconstruction Error. The reconstruction error (RE) is
defined as the mean square error (MSE) between the original
coordinates of a fine-grained configuration and the recon-
structed fine-grained coordinates of the corresponding CG
configuration:

N,

atom

RE=;Z(X1~—X§)2

Nigom i=1 (27)

Here x; indicates the original fine-grained coordinates of atom i
and x{ the reconstructed fine-grained coordinates. As detailed
in the Supporting Information, the reconstruction of the fine-
grained coordinates from a CG configuration is obtained by
means of an autoencoder, where the encoder part is defined by
the CG mapping and the decoder part is trained on long
equilibrium simulations of the fine-grained model.
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