
Kinetically Consistent Coarse Graining Using Kernel-Based Extended
Dynamic Mode Decomposition
Published as part of Journal of Chemical Theory and Computation special issue “Markov State Modeling of
Conformational Dynamics”.

Vahid Nateghi and Feliks Nüske*
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ABSTRACT: In this paper, we show how kernel-based models for the Koopman generator�the gEDMD method�can be used to
identify coarse-grained dynamics on reduced variables, which retain the slowest transition time scales of the original dynamics. The
centerpiece of this study is a learning method to identify an effective diffusion in coarse-grained space, which is similar in spirit to the
force matching method. By leveraging the gEDMD model for the Koopman generator, the kinetic accuracy of the CG model can be
evaluated. By combining this method with a suitable learning method for the effective free energy, such as force matching, a
complete model for the effective dynamics can be inferred. Using a two-dimensional model system and molecular dynamics
simulation data of alanine dipeptide and the Chignolin mini-protein, we demonstrate that the proposed method successfully and
robustly recovers the essential kinetic and also thermodynamic properties of the full model. The parameters of the method can be
determined using standard model validation techniques.

1. INTRODUCTION
Stochastic simulations of large-scale dynamical systems are
widely used to model the behavior of complex systems, with
applications in computational physics, chemistry, materials
science, and engineering. Many examples of such systems are
high dimensional and subject to meta-stability, which means
the system remains trapped in a set of geometrically similar
configurations, while transitions to another such state are
extremely rare. As a consequence, it becomes necessary to
produce very long simulations in order to make statistically
robust predictions. A prime example are atomistic molecular
dynamics simulations (MD)1 of macro-molecules, where meta-
stability is typically caused by high energetic barriers separating
deep potential energy minima.2 As a result, it requires
specialized high-performance computing facilities to reach
the required simulation times, or it may just not be feasible at
all.3

Coarse graining (CG) describes the process of replacing the
original dynamical system by a surrogate model on a (much)
lower-dimensional space of descriptors,4,5 in such a way that
certain properties of the original dynamics are preserved. CG
models can enable scientists to achieve much longer simulation

times because of the reduced computational cost, while
maintaining predictive capabilities of the full-order model.
Setting up a CG model typically requires the following steps:
first, the choice of a linear or nonlinear mapping (CG map)
from full state space to a lower-dimensional space, where the
latter serves as the state space of the surrogate model. Second,
definition of a parametric model class for the surrogate
dynamics. Finally, fitting the parameters of the selected model
class using available data.
The first step is crucial to the CG model’s success, and has

been a very active area of research for a long time, see refs 6−8
for reviews on this topic. Traditionally, coarse grained
coordinates have been based on molecular structure, e.g., by
considering only alpha-carbons or reduced atom representa-

Received: March 25, 2025
Revised: June 26, 2025
Accepted: June 26, 2025

Articlepubs.acs.org/JCTC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jctc.5c00479

J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
W

IS
C

O
N

SI
N

-M
A

D
IS

O
N

 o
n 

Ju
ly

 1
9,

 2
02

5 
at

 1
2:

39
:2

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/curated-content?journal=jctcce&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vahid+Nateghi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feliks+Nu%CC%88ske"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.5c00479&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00479?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


tions. More recently, CG projections into less interpretable and
nonlinear spaces have also been considered, such as the latent
space of a neural network transformation.9,10 The selection and
quality of the CG coordinate is not the central aspect of this
study, we focus on model selection and parameter fitting
instead. Therefore, we only show examples of low-dimensional
CG coordinates that have already been validated, and that are
not directly transferable. The problem of learning high-
dimensional and fully transferrable CG models along with
their collective variables is left for future studies.
CG models have often been parametrized using physically

intuitive functional forms for the coarse-grained energy. More
recently, much more general functional forms have been used
for the CG parameters, which are then approximated by
powerful model classes, such as deep neural networks or
reproducing kernels,11−13 which is the approach we follow in
this paper. We study CG for reversible stochastic differential
equations (SDE) with a Boltzmann-type invariant distribution,
such as Langevin dynamics. Theoretical frameworks to CG
modeling are typically based on projections of dynamical
evolution operators. This includes the Mori-Zwanzig formal-
ism,14,15 as well as the approaches by Gyöngy,16 Legoll and
Leliev̀re,17 and the averaging/homogenization framework.18

We follow Legoll and Leliev̀re’s projection method, which
means to parametrize the coarse-grained model as a reversible
SDE, disregarding memory terms. The theoretical properties of
this approach have been studied to quite some extent in the
literature.19−21

The success of machine learning (ML) in recent years has
led to the development of many powerful learning schemes for
the parameters of a CG model, see ref 22 for a comprehensive
overview. Examples are free energy learning,23 and force
matching,24 among others. Many of these learning methods are
geared toward ensuring thermodynamic consistency, which
means that the marginalized Boltzmann distribution in CG
space is preserved. Ensuring faithful reproduction of kinetic
properties, such as time-correlation functions or transition time
scales, is a much less developed topic. Besides the theoretical
contributions noted above, several authors have focused on
preserving specific dynamical observables or time-dependent
distributions by incorporating these quantities into the learning
process.25−28 Furthermore, several recent studies have
considered integrated learning frameworks for CG coordinates
and associated dynamics geared toward preserving transition
rates, using autoencoders,9 normalizing flows10 or diffusion
maps.29

In this paper, we combine learning of a coarse-grained SDE
with Koopman operator models in order to recover implied
transition time scales30 associated with meta stable states.
Transition time scales are derived from the leading spectrum of
the Koopman generator.31−34 This connection has been at the
heart of the Markov state modeling (MSM) approach30,35,36

and many important developments based on it.37−39 The
spectral matching approach,40 later formalized in ref 41, was the
first to make use of this connection, by parametrizing the CG
model as a linear expansion of fixed basis functions, and then
solving a regression problem to recover the eigenvalues of the
Koopman generator. The generator matrix can be estimated by
a data-driven algorithm called generator EDMD (gEDMD).41

We significantly improve on the idea of leveraging the
Koopman generator for the identification of coarse grained
models in the following ways:

• Based on the projection approach, we formulate a stand-
alone learning problem for the effective diffusion of a
coarse-grained SDE. This formulation is analogous to
the force matching approach for the coarse-grained
energy. Just as force matching relies on measurements of
the local mean force, our approach rests on a similar
quantity called local diffusion. Combined with a suitable
estimate for the free energy, the learned effective
diffusion provides a closed-form expression for the CG
dynamics.

• We suggest to parametrize the diffusion by a basis of
random Fourier features,42 which form a widely used
approximation technique for reproducing kernels.
Random features offer a compromise between repre-
sentational power and computational efficiency. The
only hyper-parameters to be tuned are those of the
kernel function. Conveniently, we show that the same
random feature basis can be used to train a kinetic
model for the Koopman generator. The method is
robust to statistical noise and ill-conditioning as it is
based on a whitened and truncated basis set.

• We show that gEDMD models can be leveraged to
evaluate the kinetic consistency of the learned CG
model on-the-fly by comparing its eigenvalues to those
of the reference gEDMD matrix. Importantly, this
assessment does not require simulations of the CG
model.

• We show that kinetic and also thermodynamic
consistency are achieved by the method using three
test cases, a two-dimensional model system and
molecular dynamics simulations of the alanine dipeptide
and the Chignolin mini-protein. For the molecular
systems, we learn a CG model corresponding to
overdamped Langevin dynamics. The results show that
for systems close enough to the overdamped limit, this
approximation leads to a uniform rescaling of the slow
time scales, which can be explicitly corrected for.

The structure of the paper is as follows: we introduce the
required background on SDEs, coarse graining, and Koopman
operator learning in Section 2. Our learning framework is then
presented in Section 3, while the numerical examples follow in
Section 4. Additional information on simulation details and
model selection is given in the Supporting Information.

2. THEORY
In this section, we provide the necessary background on
stochastic dynamics, data-driven modeling, and Koopman
spectral theory. The important notation used in the manuscript
is summarized in Table 1.
2.1. Stochastic Processes. We consider a dynamical

system described by a stochastic differential equation (SDE)

= +dX b X dt X dW( ) ( )t t t t (1)

whe re b X( ):t
d d i s t he d r i f t v e c to r fie ld ,

×X( ):t
d d d is the diffusion field, and Wt is a d-

dimensional Brownian motion. The diffusion covariance matrix
is denoted as ×a d d:

A standard example for eq 1, commonly used in molecular
modeling, is overdamped Langevin dynamics
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= +dX V X dt dW
1

( ) 2t t t
1 1

(3)

where V : is the potential energy, β = (kBT)−1 and γ
are constants corresponding to the inverse temperature and the
friction, respectively. The invariant measure for Xt in eq 3 is the
Boltzmann distribution μ ∝ exp(−βV), and the dynamics are
reversible with respect to μ. More generally, a reversible SDE
with invariant measure μ ∝ exp(−V) can be parametrized in
terms of the generalized scalar potential , and the
diffusion covariance a, as follows43

= + · +dX a X V X a X dt X dW1
2

1
2t t t t t t
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We will only consider reversible SDEs in this paper, and make
use of the parametrization in eq 4 when formulating learning
methods.
2.2. Koopman Generator and Spectral Decomposi-

tion. Koopman theory44,45 lifts the dynamics in eq 1 into an
infinite-dimensional space of observable functions to express
the dynamics linearly. More precisely, the family of Koopman
operators t for stochastic dynamics is defined as

= [ ] = [ | = ]x X X X x( ) ( ) ( )t x
t t 0 (5)

where ψ is a real-valued observable of the system, and [·]
denotes the expected value. The associated infinitesimal
generator is the time-derivative of the expectation value,
which can be written as a linear differential operator:

= · +

= +
= =

x b x x a x x

b x
x

x a x
x x

x

( ) ( ) ( )
1
2

( ): ( )

( ) ( )
1
2

( ) ( )
i

d

i
i i j

d

ij
i j

2

1 , 1

2

(6)

where a and b are the diffusion and drift terms defined above,
∇2[·] is the Hessian matrix of a function, and the colon: is a
short-hand for the dot product between two matrices. For
overdamped Langevin dynamics, eq 6 simplifies to

= · +x V x x x( )
1

( ) ( )
1

( )

The key quantity of interest are the eigenvalues and
eigenfunctions of the generator. The study of spectral
components of the generator helps us identify the long-time
dynamics of the system. In molecular dynamics, we expect to
find a number of eigenvalues close to zero, followed by a

spectral gap. These low-lying eigenvalues are indicating the
number of metastable states of the system, which are the macro
states the system stays in the longest.31 We write the
eigenvalue problem for the generator as

=i i i (7)

The eigenvalues λi of must be non-negative, and the lowest
eigenvalue λ1 = 0 is nondegenerate:46 0 = λ1 < λ2 ≤ λ3 ≤··· We
also refer to the eigenvalues as rates, and to their reciprocals as
implied time scales30

=t 1
i

i (8)

2.3. Coarse Graining and Projection. One of the main
motivations of this work is to learn an SDE representing the
full dynamics (1) on a coarse grained space. Coarse graining
(CG) is realized by mapping the state space Ω onto a lower-
dimensional space d by means of a smooth CG function
ξ. We write ν ∝ exp(−F) for the marginal distribution of the
full-space invariant measure μ, where F is the free energy in the
CG space.
To define dynamics in the CG space, we use the conditional

expectation operator,17,19 also called Zwanzig projector:

= [ | = ]z x x z( ) ( ) ( ) (9)

where z is a position in CG space. This operator calculates the
average of a function ψ over all x ∈Ω whose projection onto
CG space is the same point z ∈ Ω̂. Following the exposition in
ref 19, one can define the projected generator

= (10)

which corresponds to the Markovian part in the Mori−
Zwanzig decomposition. It turns out its action on a function ϕ
= ϕ(z) in CG space is given by

= [ ]· + [ ]a( )
1
2

:z
T

z
2

(11)

As one can see, is of the same form as the original
generator in eq 6, and indeed it is the generator of an SDE
Zt on Ω̂

= +dZ b Z dt Z dW( ) ( )t t t t (12)

The effective drift and diffusion coefficients are given in
analytical form by

= =b z z a z a z( ) ( )( ) ( ) ( )( )T
(13)

and the practical task of coarse graining is to approximate them
numerically.
2.4. Generator EDMD. Numerical approximations to the

infinitesimal generator can be obtained by a data-driven
learning method called generator extended dynamic mode
decomposition41 (gEDMD). Given a finite set of scalar basis
functions ψ(x) = {ψ1(x),..., ψn(x)}, and training data {xl}l = 1

m

sampled from the invariant measure μ, we form the matrices

= [ ] = [ ]x x( ) , ( )i l i l i l i l, ,

using the analytical formula (6) to evaluate the second of these
matrices. The solution of a linear regression problem leads to
the matrix approximation

=L G A1 (14)

Table 1. Overview of Notation

Symbol Definition

Xt stochastic process
t Koopman operator with lag time t

generator of the Koopman operator
h reduced basis set from whitening transformation
L̂, L̂r generator matrix and reduced generator matrix
σα

ξ effective diffusion parametrized by α
L̂α

ξ effective generator matrix for diffusion with parameters α
V, F potential and effective potential
f lmfξ , alocξ local mean force and local diffusion
A ·|i,jB contraction of dimensions i and j of arrays A and B
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where

= =
= =m

x x
m

x xA G
1

( ) ( ),
1

( ) ( )ij
k

m

i k j k ij
k

m

i k j k
1 1

(15)

These matrices are empirical estimators of the following mass,
stiffness, and generator matrices

= = =A G L G A, , , ,ij i j ij i j
1

(16)

The empirical mass matrix Ĝ is often ill-conditioned. A
standard approach to circumvent this is to perform a whitening
transformation based on removing small eigenvalues

in which r ≤ n. Here, R is a transformation matrix mapping the
original basis to the reduced basis

Dominant eigenvalues of the generator can be computed by
diagonalizing the matrix L̂ or L̂r.
For arbitrary stochastic dynamics, the computation of A

involves a second-order differentiation as shown in eq 6.
However, if the stochastic dynamics are reversible, only first-
order derivatives are required to compute the matrix A, as the
generator satisfies the following integration-by-parts formula

Importantly, if the basis functions are actually defined in a CG
space Ω̂, that is ψi(x) = ψi(ξ(x)), then by the chain rule the
matrix A can be written as

We refer to the matrix

as local dif fusion, and note that it is independent of the basis
functions. It can therefore be computed a priori in numerical
calculations.
2.5. Random Fourier Features. The gEDMD algorithm

requires choosing a set of basis functions ψ(x). In this work, we
use random Fourier features (RFFs), which are defined as

The vectors ω1,..., ωn are random frequency vectors drawn
from a spectral distribution ρ. RFFs provide a low-rank
approximation to a reproducing kernel function,42 and can
therefore generate a powerful basis without the need for
manual basis set design. The precise relation between kernel-
based gEDMD and random features was presented in ref 47. In
the following applications, we use the spectral measure
associated to a Gaussian squared exponential kernel with
bandwidth parameter γ

=k x x
x x

( , ) exp
)

2i j
i j

2

2

i

k

jjjjjjjj
y

{

zzzzzzzz (23)

or to a periodic Gaussian kernel48 on periodic domains, such as
dihedral coordinates.

3. METHODS
We now turn to the suggested framework for learning CG
dynamics based on the projection formalism and gEDMD
models. We recall that the dynamical equation in CG space is
given by (12), where the drift can be written as follows because
of reversibility43

= + ·b a F a
1
2

1
2z (24)

3.1. Diffusion Learning. By eq 13, the analytical effective
diffusion aξ is the best-approximation of the local diffusion alocξ

by a (matrix-valued) function on the CG space. Hence, we can
solve the following data-based minimization problem

=
= =

a
m

a x a xarg min
1

( ( )) ( )
a a z i

m

i i

F( ) 1
loc

2

(25)

where ∥·∥F is the Frobenius norm for matrices. We parametrize
the diffusion field aξ element-wise as a linear combination of
the reduced RFF basis

where we view the coefficient array α as a third-order tensor of
dimension d × d × r, and the symbol ·|i,j denotes contraction
over indices i and j of two arrays. The parametrization must be
symmetric, i.e., aijξ = ajiξ, and we may also choose to set specific
elements to zero, for example to enforce a diagonal diffusion
field. With the parametrization (26), the minimization problem
(25) becomes a regression problem that can be directly solved,
potentially after regularization. The complexity of the
algorithm is governed by the cost of building L̂r and learning
the diffusion coefficients α. For a diagonal diffusion field, these
costs can be estimated as mdp( )2 and +mr dmr( )2 ,
respectively, where m is again the number of samples, d the
dimension of the CG space, p is the number of random Fourier
features, and r is the rank of L̂r. The critical parameters are
therefore the number of random features p and the effective
basis set size r.
3.2. Recovery of Spectral Properties. After solving the

minimization problem (25), we can make use of the gEDMD
method to assess the dynamical properties of the learned SDE
in CG space. Using the integration-by-parts formula (19), the
elements of the reduced generator matrix corresponding to the
diffusion field (26) with coefficient array α are

In matrix notation, this leads to the following explicit
formula for the parametrized generator matrix, which can be
computed directly without resorting to numerical simulations
of the CG dynamics

Properties inferred from the matrix L̂r
α can be compared to

those obtained from the original gEDMD matrix L̂r estimated
off the full-space simulation data. For example, diagonalization
of both L̂r and L̂r

α leads to estimates λi and λi
α for the dominant

generator eigenvalues, which can be systematically compared.
We mainly resort to comparing dominant eigenvalues in the
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examples below, but we point out that a more detailed
assessment is possible: for instance, by computing matrix
exponentials exp(tL̂r) and exp(tL̂r

α), time-correlation functions
can also be evaluated.
3.3. Learning the Effective Potential.We have seen that

the accuracy of the effective diffusion field largely determines

the dynamical properties of the coarse grained dynamics. In

order to run simulations of the CG dynamics, and to ensure

thermodynamic consistency, the effective potential F also must

be learned in a parametric form. This is not the main focus of

our study, hence we just point out a few options. A well-known

and generally applicable technique is force matching,24 which is

based on the following minimization problem for the effective

force

=
= =

F
m

g x f xarg min
1

( ( )) ( )z
g g z i

m

i i
( ) 1

lmf

2

(28)

where f lmfξ is called local mean force and defined as follows

We point out the similarity to (25), which also led us to the
name local diffusion for alocξ . The effective potential can be
parametrized as a linear combination of basis functions, such as
random features, or as a deep neural network.13 In low-
dimensional CG spaces, it also possible to approximate the
projected invariant distribution ν as a linear combination of
kernel functions centered at the data sites, known as kernel
density estimate (KDE).49 Since we only consider low-
dimensional CG spaces here, we opt for the KDE option in
the examples below.

3.4. Overdamped Models for Molecular Systems. In
practical MD simulations, computation of the local diffusion
(21) requires knowledge of the full-state diffusion tensor,
which depends on the thermostat used to drive the molecular
dynamics. If the full-state dynamics are just overdamped
Langevin dynamics (3), the local diffusion reduces to the
following simple form:

where M is the diagonal mass matrix of all atoms.
Very often, however, one can apply an overdamped

approximation. If the full-state dynamics are underdamped
Langevin, then averaging theory50 shows that for small friction
γ, and under a rescaling of time, the position space dynamics
are close to the overdamped process (3). In practice, we
observe empirically that even if the friction is not asymptoti-
cally small, and even for thermostats different from under-
damped Langevin, one can find a rescaling of time such that
the position process is similar to an overdamped process.
We therefore apply the overdamped approximation of the

local diffusion (30) in the molecular examples in Sections 4.2
and 4.3. This simplification is also convenient as a mature
theory of the projection formalism for underdamped dynamics
is still under construction, see ref 51 for some preliminary
results.

Figure 1. Approximation of generator for the Lemon slice system. Potential field in (a). Membership analysis in (b) using 1000 samples. The
dominant eigenvalues of the reference generator L̂r and the learned generator L̂α

ξ built upon the learned effective diffusion, using Gaussian and
periodic Gaussian kernels, in (c). The relative error of these eigenvalues compared to the reference is shown in (d).
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As the overdamped approximation is expected to hold after a
rescaling of time, the time scales of the resulting CG model will
be faster than those of the original dynamics. To account for
this rescaling, we can make use of the existing simulation data
to also compute a standard kinetic model for the Koopman
operator, for example a Markov state model Tt at a suitable lag
time t > 0. It is sufficient to construct the MSM in CG space,
hence the definition of appropriate MSM states is not
challenging. By comparing the MSM time scales to those of
the learned generator L̂r

α, the rescaling of time can be
practically computed.

4. EXAMPLES
To show the effectiveness of the proposed method, we apply it
to a two-dimensional model system defined by the Lemon-slice
potential, and to MD simulation data of the alanine dipeptide
and of the mini-protein Chignolin, which are widely used test
cases in molecular dynamics.
4.1. Lemon-Slice Potential. 4.1.1. System Introduction.

The Lemon-slice system is governed by overdamped Langevin
dynamics in eq 3 with the following potential V

= = +V x y V r r( , ) ( , ) cos(4 ) 10( 1)2 (31)

where r and ϕ are polar coordinates. The energy landscape of
the system is shown in Figure 1a. To form the SDE for this
example, we consider a diagonal state-dependent diffusion field
σ(x) defined as
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where β = 1 is the inverse temperature. Using the Euler−
Maruyama scheme at discrete integration time step dt = 10−3

for integration of the SDE, we collect the training data for
learning. For the sake of validation and showing the robustness
of the method, we produce 5 independent experiments, each

with length of m = 105 time steps. We further down sample
them to 1000 samples each for learning effective force and
diffusion.
As shown in previous studies,20 the polar angle ϕ is a

suitable CG coordinate for this system, as it resolves all four
metastable states

=x y( , ) (33)

For this system, analytical expressions for the effective drift and
diffusion along ξ can be obtained by a slight modification of
the results in ref 20, and serve as reference values.
We apply our learning method with random Fourier features

on the reaction coordinate ξ, to identify the generator
eigenvalues and metastable states and, subsequently, to identify
an effective dynamics along ξ using Algorithm 1. As the polar
angle is a periodic reaction coordinate (RC), we use the
spectral measures associated to both a periodic and nonperiod
Gaussian kernel and compare them. The number of random
features and the kernel bandwidth in either versions of
Gaussian kernel are optimized using cross validation based on
the VAMP-score.39 Details on the VAMP-score analysis are
reported in the Supporting Information.
4.1.2. Meta-Stability Analysis. Figure 1c shows the leading

eigenvalues obtained from the generator matrix L̂r. As one
notices, there are four dominant eigenvalues followed by a gap.
These four eigenvalues are corresponding to the four minima
in the potential field. Having determined the eigenvectors of
the generator, we can perform robust Perron Cluster Cluster
Analysis (PCCA+)52 algorithm to assign to each sample point
its membership to each metastable state. Figure 1b shows that
the four potential minima are perfectly recovered in this way. A
comparison of the leading eigenvalues of the reference model
L̂r and the learned matrix L̂α

ξ for the optimal parameters α is
shown in Figure 1c. Both choices of the kernel function lead to
satisfactory results, the periodic kernel provides slightly higher
accuracy in approximation of the generator eigenvalues. Note
that the kernel bandwidth is tuned for each kernel function
separately.

Figure 2. Application of Algorithm 1 to identify angular dynamics for the Lemon-slice system. Effective force in (a), effective diffusion in (b),
effective drift in (c), and integration of an example trajectory, using both the reference and learned SDE in (d).
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4.1.3. Analysis of the CG Dynamics. The learned generator
providing the eigenvalues reported above is built upon the
effective diffusion shown in Figure 2b, which is almost
perfectly following the reference. Furthermore, we perform
the force matching as well and obtain the effective force in the
CG space shown in Figure 2a. From the effective force and
diffusion, the effective drift can be obtained according to eq 24,
which is also compared against the analytical expression in
Figure 2c, likewise showing very good agreement.
With the effective drift and diffusion fields, we are able to

simulate the learned SDE governing the CG coordinate. We
use the Euler-Maruyama scheme to integrate the learned and
reference SDEs with integration time step of dt = 10−3. Figure
2d shows two trajectories of the CG coordinate ϕ for both
dynamics for 104 time steps, using the same Brownian motion
for both trajectories. The propagated learned system follows
the reference closely, with both systems staying long times in
each metastable state, and rarely swapping in between those.
Combined, the results above demonstrate that the proposed
method can approximate the full system’s metastable sets well,
and identify a suitable SDE for CG dynamics which is accurate
even on the level of individual trajectories.
As a final analysis, we compare the properties of the learned

CG model with variable diffusion to those of a CG dynamics
with constant diffusion, in order to demonstrate the necessity
of allowing a state-dependent diffusion. We set the effective
diffusion for the constant model to = =a 22 . We propagate
the corresponding SDEs for a sufficiently large span of time,
and estimate a new generator EDMD model based on these
simulations. Figure 3, shows the eigenvalues of the generator

for these cases compared to the learned generator built upon
the original data set. The result shows that learning a state-
dependent diffusion is necessary to recover the original
system’s leading eigenvalues.
4.2. Alanine Dipeptide. 4.2.1. System Introduction.

Alanine dipeptide is a model system widely used in method
development for simulation studies of macro-molecules. Figure
4 shows the graphical representation of Alanine dipeptide. It is
well-known that the dynamical behavior of the molecule can be
expressed in terms of the backbone dihedral angles ϕ and ψ,
which constitute the two-dimensional reaction coordinate
space defining the CG map ξ:

= [ ]x x x( ) ( ) ( ) (34)

We generated a 500 ns simulation of the system in explicit
water, the details of the simulation settings are summarized in
the Supporting Information.
The familiar free energy landscape of the system with respect

to these two angles is shown in Figure 4, displaying four
minima, two on the left side, usually denoted (PII, αR), and two
in the central part, called (αD, αL).
We apply the gEDMD algorithm with random Fourier

features to find the metastable sets, and then use Algorithm 1
to learn the effective force and a state-dependent effective
diffusion field in the dihedral angle space. Because of the
periodicity of the CG coordinates, ϕ and ψ, the spectral
measure corresponds to a periodic Gaussian kernel. Similar to
the previous example, we tune the bandwidth of the kernel
function as well as the size of random features using the
VAMP-score.
4.2.2. Meta-Stability Analysis. Figure 5a shows the leading

finite time scales by taking reciprocals of the first three nonzero
eigenvalues of the generator obtained from the gEDMD matrix
L̂r (error bars in the figure are generated by analyzing 5
independent subsampled sets of the original data set, each
comprising 50,000 samples). The figure indicates the three
dominant time scales which are corresponding to the four
minima in the free energy landscape followed by a gap. In
addition, we also show the time scales corresponding to the
generator Lα

ξ based on the optimal effective diffusion, which
agree well with the reference. Note that the generator time
scales shown have been rescaled after comparison to a Markov
state model Tt trained on the original simulation data, as
described in Section 3.4. This comparison showed that the
time scales of the generator models L̂r and L̂α

ξ were smaller
than those of the MSM model by a uniform factor of about
100, meaning that the dynamics in CG space based on the
overdamped assumption is accelerated by a factor 100 for this
example. After applying the uniform rescaling, the generator
time scales match those of the MSM analysis very well.
4.2.3. Analysis of the CG Dynamics. For this 2-dimensional

coarse graining, we can express the diffusion field as a 2 × 2 full
matrix. For simplicity, however, we assume that the learned
diffusion is a diagonal matrix. Figure 6 shows the first and
second diagonal terms of the learned diffusion field based on
50000 samples of the available data set. To learn the effective
potential, we found that the KDE method works best. The
reference and learned effective free energy surfaces are
depicted in Figure 6c,d, respectively. It it noticeable that the
learned free energy surface correctly captures all energetic
minima and barriers up to some minor spurious behavior close
to the transition regions. We emphasize once again that this
approximation could probably be improved further by using a
more accurate learning method.

Figure 3. Dominant eigenvalues of the generator, using models built
on simulation data of the learned coarse grained dynamics with state-
dependent diffusion (SDD, orange) and with constant diffusion (CD,
green). As a comparison, we show the eigenvalues of the generator L̂r
using the original data set (blue). Note that the first eigenvalue is
omitted as it is zero.

Figure 4. Graphical representation of the alanine dipeptide molecule
on the left, and the reference free energy profile in two-dimensional
dihedral angle space on the right.
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From the effective force and diffusion, one can compute the
effective drift from which the SDE governing the dynamics in
the CG space can be formed. We integrate the learned SDE for
5 × 105 integration steps, with an effective (rescaled) time step
of 0.1 ps, corresponding to an effective total simulation time of
50 ns. Figure 7b shows the estimated free energy surface
obtained from a histogram of the propagated data set which is
somewhat less accurate than the learned potential. Since we are
mainly interested in kinetic properties, we estimate a new

gEDMD model on the propagated data set for the CG
dynamics. We find that the four metastable states are correctly
reproduced by a PCCA+ analysis of the propagated coarse
grained SDE, as shown in the left panel of Figure 8. In
addition, we show the resulting transition time scales on the
right of Figure 8, compared to the ones corresponding to the
learned generator built upon the original data set, as well as the
rescaled MSM time scales. The results confirm that the two-
dimensional CG dynamics with learned effective diffusion

Figure 5. Approximation of generator for alanine dipeptide. The dominant time scales corresponding to the reference generator L̂r and the learned
generator L̂α

ξ built upon the learned effective diffusion on the left, and the relative error of these time scales on the right. The time scales of the
MSM model are shown as black dashed lines for comparison. Note that time scales of the generators are rescaled by a factor of 100 to account for
the overdamped approximation. The first time scale (l = 2) corresponds to the transition between the left-hand side and the central part, the second
one (l = 3) corresponds to the transition between PII and αR, and the third one (l = 4) corresponds to the transition between αD and αL.

Figure 6. First (a) and second (b) diagonal terms of the learned diffusion covariance matrix, the reference free energy surface (c) and the free
energy surface learned via KDE (d).

Figure 7. Left: Free energy surface learned via KDE. Right: estimated free energy surface from histogramming the simulated CG dynamics.
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accurately recover the metastable states and transition time
scales of the original dynamics, while adequately recovering
their thermodynamic properties.
As a final analysis, we also generate a trajectory of the coarse

grained SDE, but with the diffusion set to a constant. We
choose the value of constant diffusion according to the average
of the learned diffusion on the original data set, resulting in a ≈
30.25 ps−1. We also estimate a gEDMD model for these
dynamics, and report the transition time scales in Figure 8. The
result shows the necessity of learning a state-dependent
diffusion field.
4.3. Chignolin. 4.3.1. System Introduction. Finally, we

apply the proposed method to the ”025” mutant of Chignolin
(CLN025),53 which is a mini-protein consisting of 10 amino
acids. Figure 9 shows the graphical representation of the

molecule. The data for this example was obtained via
simulation in OpenMM based on AMBER99 SB-ILDN force
field, see ref 54 for details of the setup. The data set consists of
20 independent trajectories each for 5 μs.
For this example, we need to find a coarse graining function

in a data-driven manner. To obtain the CG space, we start with
a 45-dimensional feature space comprising the Cα distances of
all residues. A straightforward linear method to find the CG
coordinates is Time-Lagged Independent Component Analysis
(TICA).55 As a result of TICA, we select the first 2 dominant
components to constitute the RC space:

= [ ]x x x( ) TIC ( ) TIC ( )1 2 (35)

By projecting the atomistic positional information of the
system onto this 2-dimensional TICA space and computing
the histogram of the data, the free energy surface can be
obtained, as shown in Figure 9. As shown in previous studies,
the two-dimensional TICA space adequately captures the slow
dynamics. In particular, the free energy surface shows three
minima, representing the three conformational states of folded,
unfolded and misfolded.
4.3.2. Meta-Stability Analysis. To find the time scales of the

system, we applied the gEDMD method with random Fourier
features as before, and computed the eigenvalues of the
generator model L̂r. We performed the same analysis as for the
previous example to tune the kernel bandwidth and the
number of random features based on the VAMP-score, see the
Supporting Information for details. Figure 10 shows the
corresponding time scales of the system, which are the inverse
of the generator’s eigenvalues. The figure indicates the two
leading time scales of the system corresponding to the three

Figure 8. Kinetic consistency of the CG dynamics for alanine dipeptide. Left: PCCA+ membership analysis applied to simulation data of the CG
dynamics. Right: slowest finite time scales calculated using an approximation of the generator from the reference data set (blue) and the propagated
CG dynamics with state-dependent diffusion (SDD, orange) as well as constant diffusion (CD, green), compared to those obtained via a Markov
state model (black).

Figure 9. Graphical representation of CLN025 on the left,1 and the
reference free energy surface in the two-dimensional TICA space on
the right. The left-hand side minimum corresponds to the folded
state, the bottom right minimum corresponds to the unfolded state
and the top one associates to the misfolded state.

Figure 10. Approximation of generator for Chignolin. The slowest finite time scales corresponding to the reference generator L̂r and the learned
generator L̂α

ξ built upon the learned effective diffusion on the left, and the relative error on the right. The time scales of the MSM model on the
original simulation data are shown as black dashed lines for comparison. Note that time scales of the generators are rescaled by a factor of 106. The
first time scale (l = 2) corresponds to the folded-unfolded transition and the second one (l = 3) corresponds to the unfolded-misfolded transition.
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metastable sets, followed by a spectral gap. Moreover, we show
that the time scales of the CG generator Lα

ξ for the optimal
effective diffusion are very similar, the relative errors shown on
the right of the same figure are sufficiently small. Also, we
observe that the gEDMD time scales are once again uniformly
rescaled compared to the leading time scales of an MSM
estimated on the original data, see the previous example and
Section 3.4. The rescaling factor is quite drastic this time,
reducing microsecond time scales of the full system to less than
pico-seconds for the CG dynamics. Nevertheless, as the
rescaling is again uniform, the original time scales can be

recovered by rescaling time. Error-bar figures were again
generated by analyzing 5 independent subsampled sets, each
comprising 1.6 × 105 samples.
4.3.3. Analysis of the CG Dynamics. Following the same

procedure as in the previous examples, we learned a 2 × 2
diffusion matrix in the CG space, but this time, we tested out a
full nondiagonal diffusion field. Figure 11 shows the four
elements of the learned diffusion matrix. In addition, the left
panel of Figure 12 depicts the free energy surface learned by
the KDE method, which is in satisfactory agreement with the
reference one in Figure 9.

Figure 11. (a−d) Components of the learned diffusion covariance matrix for Chignolin in its two-dimensional TICA space (note that the off-
diagonal elements are symmetric).

Figure 12. Free energy surface in the two-dimensional TICA space for Chignolin, as learned by the KDE estimator on the left, and obtained from a
histogram of the CG dynamics on the right.

Figure 13. Kinetic consistency of the learned CG model for Chignolin. Left: PCCA+ states obtained from simulating the learned CG model. Right:
Slowest finite time scales of the system calculated using an approximation of the generator from the reference data set (blue) and from the
propagated CG dynamics (state-dependent diffusion in orange, constant diffusion in green). We also compare to rescaled time scales from a
Markov state model on the original simulation data (black).
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From the effective diffusion and potential energy, we
compute the effective drift according to eq 24. We integrate
the learned SDE for 5 × 105 integration steps, with an effective
(rescaled) time step of dt = 20 ps, corresponding to an effective
total simulation time of 10 μs. The right panel in Figure 12
shows the estimated free energy surface obtained from a
histogram of the propagated CG dynamics. Once again, we
find it in satisfactory agreement with the learned and the
reference free energy in the CG space. Its accuracy could likely
be improved by applying a more accurate learning method.
As we are mainly interested in kinetic properties, we

compute a new gEDMD model on the propagated CG
dynamics, and recompute the associated eigenvalues and
eigenvectors. The result of a PCCA+ analysis indicates that the
correct metastable sets are recovered, as shown in the left panel
in Figure 13. Likewise, the leading implied time scales
estimated from the simulated CG dynamics are in good
agreement with those of the original gEDMD model L̂r and the
rescaled MSM time scales, both estimated from the original
simulation data, as shown in the right panel of Figure 13.
Similar to the previous example, we also generate a separate

trajectory based on a constant diffusion according to the
average of the learned diffusion. We find that transition time
scales for the constant diffusion are not well fitted to the
reference. Due to taking the average, too much detailed
information about the diffusion field is lost, leading to different
time scales. This result confirms the need to learn a state-
dependent diffusion field in the CG space to achieve kinetic
consistency.

5. DISCUSSION
We presented a novel approach to learn kinetically consistent
coarse grained models for stochastic dynamics. We have
introduced a learning method for the effective diffusion field in
CG space, and shown how the kinetic properties of the CG
dynamics can be evaluated by exploiting models for the
Koopman generator (gEDMD algorithm). We have also shown
that random Fourier features provide an efficient and flexible
parametrization for both the effective diffusion and the
gEDMD model. By means of three examples, a two-
dimensional model potential and two data sets of molecular
dynamics simulations, we showed that the effective dynamics
in low-dimensional reaction coordinate spaces are able to
reproduce both thermodynamic and kinetic quantities of the
full dynamics accurately.
For the molecular examples, we have relied on the

overdamped assumption to parametrize reversible CG
dynamics. We have seen that this assumption leads to a
uniform acceleration of the CG dynamics compared to the full
system. The rescaling factor can be estimated numerically by
comparing the gEDMD model to a kinetic model that does not
rely on the overdamped assumption. We used MSMs in this
paper, but note that a more general EDMD model (e.g., using
random features) would work just as well.
In this study, we used long equilibrium simulations to train

CG models. However, one of the appealing aspects of the
generator EDMD approach is that it only requires Boltzmann
samples. As has been pointed out in previous studies, these
samples can also be obtained from biased sampling
simulations,56,57 or by employing generative models.58

Among other topics, future work will focus on applying the
formalism to higher-dimensional and more transferrable CG
coordinates, for example C-alpha models. We do not anticipate

a principal limitation to applying our method in higher-
dimensional spaces. Learning the effective diffusion and the
gEDMD model, which is crucial to validate kinetic consistency
of the CG model, might require more careful parameter
choices in higher-dimensional spaces. This is currently under
investigation. Another topic is the construction of CG models
that can explicitly account for the underdamped structure of
the full system, or that can incorporate memory terms, which
were entirely disregarded in our study. Moreover, one can also
try to simultaneously optimize the CG mapping ξ along with
the parameters of the CG model, for instance by balancing the
VAMP score versus the complexity of the CG model.
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